Crucial Knowledge 1.1 : Systems Architecture

1. The purpose of the CPU			2. Common CPU Components and their Function				
The pur CPU	pose of the	To manage basic operations of the computer. To be the 'brains' of the computer	The Control Unit has two functions		(1) Sending signals to control the flow of data and instructions, and (2) decoding instructions		
The main components of the CPU		ts Control Unit. Arithmetic Logic Unit. Registers. Cache	Cache memory		A small section of extremely fast memory used to store commonly used instructions and data. It is useful as the CPU can access the		
Von Neumann Architecture		The architecture that allows for the storage of instructions and data in the same location	The ALU h	as the	(fast) cache directly. L1 cache is closest to the CPU, L3 cache furthest It carries out mathematical operations / logical operations / shifting		
The FDE Cycle		The cycle the CPU continuously carries out to process instructions	following functions		s operations on data; for example multiplication, division, logical comparisons		
Binary		The number system used to store instructions and data in the computer	An Addres	55	This is a location in he Main Memory (RAM) that stores data or instructions in the Von Neumann Architecture		
The role of a register in the CPU		in It is a place to temporarily hold data and instructions as they are being processed by the CPU.	Buses		Transfer information between the CPU and Main Memory (and other places). For example the Address bus carries memory addresses between the CPU and the RAM		
The PC		The Program Counter keeps the address of the <u>next</u> instruction to be processed	3. The F	-D-E (Fe	tch Decode Execute) Cycle		
The MAR		The Memory Address Register is used to tell the CPU where to locate data in Main Memory	The F-D-E Cycle		I. Fetch		
The MDR		The Memory Data Register is used to store data that is fetched from Main Memory	repeatedly cycles	/	3. Execute 2. Decode		
The ACC		The Accumulator stores results of logic operations and calculations used during processing	The Fetch The ac Stage Memo	ddress is generated by the Program Counter (PC) and is carried to the ory Address Register (MAR) using the Address Bus. The PC then			
4. Per	formance	of the CPU]	update cycle. T	tes and stores the next memory address, ready for the next round of the The data or instruction that is in that memory location is placed on the		
Cores	CPUs with n time.	nultiple cores have more power to run multiple programs at the same		data bu Registe	data bus and carried to the processor and is stored in the Memory Data Register (MDR)		
Clock Speed	The clock sp megahertz (the CPU car	peed describes how fast the CPU can run. This is measured in MHz) or gigahertz (GHz) and shows how many fetch-execute cycles in deal with in a second.	The Decode Stage	The dat find ou ADD, S	ta or instruction is then the Memory Data Register (MDR). decoded to t if it is a piece of data or if it is an instruction to do something such as TORE, SWITCH, REPEAT etc.		
Cache Size	The more d pulses need billions of e	data that can be held in the cache, the shorter the trips the electric d to make so this speeds up the processing time of each of those electrical signals, making the computer noticeable faster overall.		The CP instruct the inst will exe	The CPU performs the actions required by the instruction. If it is an instruction to control input or output devices the Control Unit will execute the instruction. If it is a calculation then the Arithmetic and Logic Unit (ALU) will execute the instruction.		
5. Em	bedded Sy	vstems]	Accum	ulator.		
Definitio	on	A computer system which forms part of an electronic device	Reasons	They are o	cheaper to make and smaller than a General Purpose Computer		
Re-programmable Not for different purposes but firmware can sometimes be u		Not for different purposes but firmware can sometimes be upgraded	Examples	Washing r	machine, Smart Oven, Car Engine, Pacemaker		

Crucial Knowledge 1.2.1 : Primary and Secondary Storage

1. The purpose	of RAM and ROM in a Computer System	3. Secondary Storage			
The purpose of RAM	1 RAM is the main memory (also called primary storage) for storing data and programs while they are in use	Difference from primary storage		Primary storage (e.g. RAM, cache) is volatile. Secondary storage is non-volatile. It retains its data when the power is switched off	
The purpose of RON	A ROM stores the boot sequence, which is a set of instructions that the computer executes every time it is switched on. ROM is essential since if loads the operating system	Cache memory		A small section of extremely fast memory used to store commonly used instructions and data. It is useful as the CPU can access the (fast) cache directly. L1 cache is closest to the CPU, L3 cache furthest	
We use RAM rather than Secondary Storage	The RAM can be accessed at a much higher speed than the secondary storage. If the CPU was having to communicate directly with secondary storage for the F-D-E cycle the computer	ROM as secondary storage		Not really. ROM is read only. Secondary storage generally needs to be written to as well as read from	
	would be incredibly slow	4. Common types of storage		es of storage	
Volatility	ROM is non-volatile (it keeps its contents when the power is turned off). RAM is volatile (it loses its contents when the power is turned off)	Optical The sur the sur surface		face of a CD is covered in microscopic dots. A laser would skim across face reading these. As the laser passes over, the pattern on the is picked up. If the laser hits a dot it is reflected differently to if there	
Primary Storage	Primary storage devices are internal to the system and are the		were n	were no dot present. Examples : CD/CDR/CDRW/DVD/BluRay	
Devices	storage devices have an instance of all the data and applications currently in use or being processed. The computer fetches and keeps the data and files it in the primary storage device until the process is completed or data is no longer required. RAM, ROM, Graphics Card RAM, cache and registers are common examples of primary storage devices	Magnetic	Magne sides w those a demag the sur in one Drive /	tic hard drives use silver coloured disks which are covered on both with a magnetic film divided into billions of tiny areas. Each one of areas can be independently magnetised (to store a 1) or netised (to store a 0). The read/write heads would flicker quickly over face as it reads and writes the data. Several platters would be installed hard drive to give greater storage capacity. Examples : Hard Disk DAT / Tape Drive / Cassette	
Increasing RAM	This can speed the computer up since there is less need for virtual memory	Solid State	Solid-state secondary storage does not have any moving parts. Solid secondary storage stores data using circuit chips. They are sometimes		
2. The Need for	Virtual Memory		flash di	rives. Examples : USB drives / SD Cards / SSD Drives	
Definition of virtual	A temporary storage space taken up on a secondary storage device	5. Considerations for the Most Suitable Storage Device			
memory	(e.g. hard disk) to allow more space for running programs and data than can fit in primary storage (RAM)	Capacity	How m	uch data needs to be stored	
llse of virtual	Open applications / data that are not in current use are 'paged' out	Speed	How qu	uickly can the data be stored. How quickly does it need to be read	
memory	to the secondary storage. When they are need they are 'paged' back	Portability	Does t	ne device need to be transported? Are weight and size important	
	into primary memory	Reliability	Is it mission critical? Will it be used over and over again?		
Advantage of	Having virtual memory available allows a computer to run more	Cost	How e	pensive is the media per byte of storage	
Virtual memory	with much larger amounts of data than could fit in the primary storage (main memory / RAM)	6. Typical Uses			
Disadvantage of	It is relatively slow compared with RAM. The need to page data in	Optical	Read o	nly distribution on a large scale (CD/DVD). Relatively small capacity	
virtual memory	and out of the secondary storage device slows down the computer. It	Magnetic	High d	ata capacity. Reasonably fast. Low cost. Cloud storage on server farms	
	can also lead to 'disk thrashing'	Solid State	Low pc	ower. Small. Rugged. Silent. Very fast. Medium data capacity	

Crucial Knowledge 1.2.2 : Data Storage

1. Data units		2. Conversions	4. Chara	I. Characters				
Bit (b)	The smallest unit of data. 0 or 1		Binary to Denary	Individual		Each character is assigned an individual binary code to represent it.		
Nibble (N)) 4 bits		Denary to Binary	Characters		The number of bits depends on the 'encoding' used		
Byte (B)	8 bits (note the difference between b a	d B)	Hexadecimal to Denary	Character S	Character Set		The name given to a collection of characters matching to binary codes. There are many examples.	
Kilobyte (K	KB) 1000 bytes. Note KB is different from K		Denary to Hexadecimal	Choice of		Аc	A character set encoded with more bits allows more characters. This	
Megabyte	e (MB) 1000 KB		Binary to Hexadecimal	Character S	Character Set		is useful for accents, symbols, emojis, other languages (e.g. Chinese)	
Gigabyte ((GB) 1000 MB		Hexadecimal to Binary	5. Exam	5. Examples of (aracter Sets	
Terabyte (TB) 1000 GB		Left Binary Shift	ASCII	7-bits to	o re	oresent characters allowing 127 characters to be represented	
Petabyte (I	РВ) 1000 ТВ		Right Binary Shift	Unicode	16/24	/ 32	bits. Covers many modern and historic languages, as well as lots	
3. Oper	rations				of symb	ools	which are used in maths and other specialist areas	
Binary	You should arrange the two binary numbers a	ove e	ach other so that the	6. Image	es			
addition	olumns line up. Start on the rightmost digit and add them. If there are any		Pixel	Pixel The smallest element of a bitmap image. Pixels desk				
Carries, write them down next to the next left column. Overflow If the answer to the left column results in a carry, this is known as an overflow and it causes an overflow error. This can cause problems if a computer program hasn't been written to handle overflows.		is known as an overflow	Vector vs Bitmap	Vector vs A vector image describes the lines and shapes. A bitmap image consists of Bitmap rows of coloured dots.				
		Colour Depth	The number of bits used to represent each pixel in a bitmap image. An 8 image can show 2 ⁸ or 256 colours.					
Left Binary Shift	Make the number longer, and therefore bigger. Each place it shifts will doublerythe value. A binary left shift of one place (<<1) will double the value, a binary		Resolution	 In a bitmap image resolution is measured in DPI (dots per inch). The higher the resolution the better the picture quality 		image resolution is measured in DPI (dots per inch). The higher on the better the picture quality		
Right Binary Shift	Make the number shorter, and smaller. The rig forget about it. A binary right shift of one place number, and a binary right shift of two places	nt mos (writt >>2) v	st digit is "lost", so we en as >>1) halves the will quarter it.	Metadata	Data th decode depth,	ta that is saved before and after the image to tell the computer how code the image. It includes the size in pixels (width x height), the co pth, the resolution, the GPS location of where the image was taken,		
7. Soun	d			Image size	The size	e of	an image is width x height x colour depth (+10% for metadata)	
Analogue . Digital	/ Analogue sound waves must be converted taking a sample of the sound at set interval	nto di . This i	gital sound waves by is because computers can	Factors Greate and im		Greater colour depth and/or greater resolution will make the file size bigger, and improve the quality of the image; and vice versa		
	only work with digital 'numbers', and not ar	logue	e 'sound'	8. Compression				
Sample rat	te Number of times analogue signal is sample	d per s	second. Measured in Hertz	Compressio	on		Compression is when a file is encoded so it uses fewer bits than	
Bit depth	Number of bits used per sample. Sometime	s knov	vn as sample resolution				the original file format	
File size	Sample rate x sample resolution x seconds		<u></u>	Lossless co	mpressio	n	Gets rid of unnecessary data to re-present data without losing any information. This process is reversible	
Factors	Larger sample rate and/or bit depth will ma improve the playback quality; and vice vers the recording longer will make the file size	ke the 1. Also igger	file size bigger and , making the duration of , and vice versa	Lossy comp	pression		Gets rid of the least essential data. This is an irreversible process: once data is lost it can't be recovered	

Crucial Knowledge 1.3.1 : Networks and Network Topologies

1. Types of N	letworks		
Network	A set of connected computers and other devices (e.g. printers, phones, HomeKit devices) for the purpose of sharing resources		
LAN	Local Area Network. Covers a small geographical area (a home, a school, etc.) The infrastructure is often owned by the individual / organisation		
WAN	Wide Area Network. Covers a large geographical area. WANs are made up of LANs joined together. The infrastructure is often owned by a Telecoms or other company rater than the individual		
Advantages to using a LAN	 Resources (files, etc.) and devices (printers, etc.) can be easily shared across the network Computers can be configured with the same 'image' so you have the same programs and access to your data from any computer (like in school) You can control devices (e.g. HomeKit) 		
Disadvantages to using a LAN	Security. Malware can spread across a networkComplexity of setting up and maintaining		
 to using a LAN Complexity of setting up and maintaining 2. Factors affecting performance of a network 			

Latency	You can get bottlenecks in parts of your network, either because of a faulty switch, or due to the design of your network. Latency is the term used describe the time it takes data to travel from one designated point to another on the network
Bandwidth	The maximum amount of data transmitted over an internet or LAN connection in a given amount of time.
Transmission Media	WiFi generally has less bandwidth than wired connections. Wired connections (ethernet) can be different speeds (10Mbps, 100Mbps, Gigabit). Switches and routers also have maximum speeds
Concurrent Users	The more users there are on a network the more data is likely being transmitted. This means it can take longer as you have to wait your turn for your packets to travel across the network

6. Star and Mesh Topologies

Star Cheaper than mesh Network network. Less cabling. Easy to add devices BUT total reliance on central node. If it fails whole network fails

Mesh Full or partial. More Network cabling than star. Costs more to install. Harder to add a device. Harder to maintain BUT no Single Point of Failure

3. Network Types

Client-Server

The network relies on a central server and all the clients (devices) request services from the server such as print services, file services etc. Additional hardware is needed in this type of network: a server. All files can be stored and backed-up centrally on a server which means workers can access files from any computer on the network and the computers can also be updated centrally.

All computers have equal status and any computer can act as a client and a server–even at the same time. All computers can request and provide network services. For example, any computer can use a resource physically connected to a different computer. There is no need to buy a dedicated server

4. Require	d Hardware
NIC	The Network Interface Card is in each computer/devices and allows connection to other devices on the network. It can allow wired connections, wireless connections, or both
Transmission Media	What connects the computer/devices to each other. Copper cables, fibre optic cables, wireless signals
Switch	A device on the network that receives signals from a computer/device and transmits the signal to its intended recipient
Router	A device used to connect different networks together. For example a home LAN to the internet, or a fibre optic cable to a home WiFi network
WAP	A Wireless Access Point is a device that receives and transmits wireless signals on the network. Often connected to rest of the network by cables
5. The Inte	ernet
The Internet	The Internet is a global collection of interconnected networks
DNS	The Domain Name Server is a large directory allowing the Internet Service Provider (ISP) to look up the correct IP address for the desired website
Hosting	If you don't own your own servers and host your website yourself you can use a company to do it for you. They will monitor and maintain their servers they are renting you space on
The Cloud	Data can be stored 'in the cloud'. This means on servers (in server farms) run by big companies. The data can be accessed from anywhere
Web Servers and Clients	Servers provide services (e.g. Web server -> Web pages, File server -> file storage/retrieval). Clients request / use services from a server

Crucial Knowledge 1.3.2 : Protocols and Layers

1. Modes of Connection			2. Wireless Encryption		
Wired	Ethernet is a set of standards (protocols) for how data is transmitted over a wired local area network. It is the most common set of protocols. Data is transmitted in frames	SSID	Wireless networks are identified by a unique "Service Set Identifier" (SSID). Can be invisible/visible and have a password. The SSID has to be used by all devices which want to connect to that network.		
Inside an Ethernet 'frame'	 Preamble of bits used to synchronise transmission Start frame delimiter to signify start of data part of the frame Source and destination MAC address The actual data Error checking information (cyclic redundancy check - CRC) 		Data is encrypted by scrambling the data into cipher text using a "master key" created from the SSID of the network and the password. Data is decrypted by the receiver using the same master key, so this key is not transmitted. Protocols used for wireless encryption include WEP, WPA, WPA2.		
Wi-Fi	Wi-Fi is a means of allowing computers smartphones or other devices to	3. IP and	MAC Addresses		
••••	within a particular area. It has a range of about 100m, takes quite a lot of power (relatively), and has a high bandwidth (but less than a wired		Every device on a network has a Network Interface Card (NIC). Every NIC (in the world) has a unique Media Access Control (MAC) address. It is used to route frames on a LAN		
Wi-Fi advantages	 Connection) Users can move around freely Easier to set up, and less expensive than wired Speeds are slower than wired networks Relies on signal strength to the wireless access point (WAP) Signal can be obstructed Less secure than wired networks 	IP address	P Addressing is used to route frames on a WAN (called packets). Every levice on the internet has a unique IP (Internet Protocol) address which is ssigned to the device by a server. Two main standards (IPv4 and IPv6)		
disadvantages		Internal and External IP Addresses	A router will have a unique WAN facing IP address and a LAN facing IP address. Often all devices on a LAN (with unique internal IP addresses) will share a single external IP address		
Bluetooth	Bluetooth is a standard for the short-range wireless interconnection of	4. Standards			
	mobile phones, computers, and other electronic devices. It has a range of about 10m, takes very little power, and has a relatively low bandwidth		A set of specifications for hardware/software. Enables products to be compatible with each other and interact with each other		
5. Common	Protocols	ASCII/Unico	de Character set standards		
TCP/IP	Transmission Control Protocol/Internet Protocol. Used to communicate	IEEE	Computer cables standards		
HTTP / HTTPS	Hypertext Transfer Protocol (secure) Used for webpage requests	HTML	Standard for creating websites		
FTP / FTPS	File Transfer Protocol (secure). Used for file transfers	PNG, GIF, M	P3 Standards for documents, images, sounds, videos, etc.		
POP	Post Office Protocol. Used for receiving e-mail. Downloads e-mail from the	6. Layers			
	server to your device and deletes it from the server	Concept	The concept of layering is to divide the complex task of networking into		
IMAP	Internet Message Access Protocol. Used for receiving e-mail. Keeps e- mails on the server. This allows your device to stay in sync with the server	Rosponsibili	smaller, simpler tasks that work with each other.		
POP vs IMAP	POP you have your mail on one device since it is deleted from the server.		Each layer provides a service to the layer above it		
SMTP	Simple Mail Transfer Protocol. Transfers outgoing emails from one server to another / from a email client to a sever	Advantages	Reduces the complexity of the problem into manageable sub-problems. Devices can be manufactured to operates at a particular layer. Products from different vendors will work together.		

Crucial Knowledge 1.4 : Network Security

1. Forms of	Attack	2. Threats pos	sed to Networks		
Malware	Software written in order to infect computers and commit crimes e.g. fraud or identify theft. Malware exploits vulnerabilities in software	Malware	Files are deleted, become corrupt or are encrypted.Computers crash, reboot spontaneously and slow down.		
Types of Malware	Malware is term that covers (among other things) viruses, trojans, worms, ransomware, spyware and adware	_	Internet connections become slow.Keyboard inputs are logged and sent to hackers.		
Phishing	Online fraud technique used by criminals. It is designed to get you to give away personal information such as usernames, passwords, bank details, credit card details Achieved by disguising as a trustworthy source in an electronic communication, e.g. an email or fake website.	Phishing	 Accessing a victim's account to withdraw money, or purchase merchandise and services. Open bank accounts, credit cards, cashing illegitimate cheques. Gain access to high value corporate data. Financial services can blacklist the company 		
Brute Force Attack	A trial and error method used to decode encrypted data (such as passwords). Uses every combination until it hits upon the correct one.	Brute Force Attack	Theft of data.Access to corporate systems.		
DOS Attack	Denial of Service attack. Floods a server with useless traffic causing the server to become overloaded and unavailable	(D)DOS Attack	 Loss of access to a service for customers Lost revenue 		
DDOS Attack	Distributed Denial of Service Attack. Using multiple computers (zombies) in a Botnet to undertake a DOS attack		Lower productivityDamage to reputation		
Data Interception and Theft	Stealing information from an unknowing victim's computer in order to get confidential information, or to compromise their privacy. E.g. to sniff	Data Interception and Theft	 Usernames and passwords compromised Disclosure / theft of corporate data 		
SQL Injection	A technique used to view or change data in a database by inserting additional code into a text input box, creating a different SQL command	SQL Injection	 Contents of databases can be output, revealing private data. Data in the database can be amended or deleted. New rogue records can be added to the database. 		
Zero Day Attack	An attack using an unknown and undocumented vulnerability in software code (unknown to the code owner)	People	Many system vulnerabilities are caused by people being careless:Not installing operating system updates.		
3. Identifyir	ng and Preventing Vulnerabilities		Not keeping anti-malware up to date.Not locking doors to computer rooms.		
Malware	 Security software (Spam filter, Anti-virus, Anti-spyware, Anti-spam) Enabling OS and security software updates. Staff training Backup files regularly onto removable media. 		 Not logging off or locking their computer. Leaving printouts on desks. Writing passwords down on sticky notes attached to computers. Sharing passwords. Losing memory sticks / laptops. 		
Phishing	 Strong security software. Staff training: awareness of spotting fake emails and websites. Staff training: not disclosing personal or corporate information. Staff training: disabling browser pop-ups. 		Not applying security to wireless networks.Not encrypting data.		
Brute Force Attack	Network lockout policy, Using progressive delays.Staff training	Data Interception and Theft	Encryption and using virtual networksStaff training and computer use policies		
(D)DOS Attack	 Strong firewall and packet filtering Properly configuring servers and auditing and monitoring systems 	SQL Injection	Validation on text boxesDatabase permissions		

Crucial Knowledge 1.5 : Systems Software

1. Definitio	ns	4. Features Of	ten Provided by an Operating System		
Systems Software	Systems Software is the software used to control the hardware of the computer. It is contrasted to application software which is used to enable the user to perform tasks and create content and products	Multitasking	Running multiple applications at the same time by giving each application a small time-slice of processor time. This allows more than one program to be held in memory at a time, and data shared		
Operating System	An operating system is a piece of system software that communicates with the hardware of the computer and allows other programs to run. It is		music on your PC at the same time as word processing for example		
	comprised of system software, or the fundamental files your computer needs to boot up and function	Memory Management	When programs are loaded, the operating system decides where they are held in memory. Over time the memory becomes fragmented as		
Peripherals	Peripherals are controlled by software called device drivers. Standard drivers (mouse and keyboard) are included in the operating system, however more specialist peripherals may need drivers programmed by the manufacturer which convert signals into machine code and are		programs are loaded and closed because they use different amounts of memory. The operating system must keep track of different program fragments. When the memory is full, the operating system uses virtual memory		
	installed separately	Device Drivers	Translates operating system instructions into commands that the		
Utility Software	Utilities are programs that are installed to perform a specific function, usually to improve the efficiency or security of a computer system		and many common ones are built into the Operating System		
2. The Func	tion of Operating Systems	User Management	Providing for different users to log into a computer. The operating system will retain settings for each user, such as icons, desktop backgrounds etc. Each user may have difference access rights to files and programs. A client server network may impose a fixed or roaming profile for a user, and manage login requests to the network.		
What does an Operating system do?	An operating system manages all of the software and hardware on the computer. Most of the time, there are several different computer programs running at the same time, and they all need to access your				
	computer's central processing unit (CPU), memory, and storage. The OS co-ordinates this activity	File Management	Data is stored in files. An extension to the filename tells the operating system which application to load the file into. Files can also be placed		
Interaction	A user interacts with the computer by means of an interface provided by				
		5. Examples of Utility Software			
3. Types of	Interface	Encryption	Encryption utilities use an algorithm to scramble plain text into cipher text. It can be decrypted and read again with a Key		
GUI	other) pointer Sometimes calls WIMP. It is visual, interactive, and intuitive. Optimised for mouse/touch input	Defragmentation	Defragmentation utilities reorganise files on a hard disk, putting fragments of files back together, and it collects together free space.		
CLI	A Command Line Interface is text based. It uses less resources than a GUI. It is more efficient but harder to learn. Often repetitive processes can be automated with scripts		This reduces the movement of a read/write head across the surface of the disk, which speeds up file access. Solid state drives should not be defragmented (it is unnecessary as they have no moving parts. It also reduces their lifespan)		
Menu	A Menu Interface presents successive menus to the user with options to choose at each stage. Often used with buttons on a keypad. (Think calculator when you press the 'MENU' button)	Compression	Compression utilities reduce the size of a file so that it takes up less space, and is quicker to download/upload.Compressed files must be extracted before they can be read. Compression is lossy or lossless		
Natural Language	A Natural Language Interface responds to questions in a spoken language. They are not always reliable but are improving all the time. (Think Siri or Alexa)	Backup	Backup utilities take a copy of the data and place it elsewhere (disks, tapes, cloud, etc.). Backups can be either full (backup everything) or incremental (back up changes since the last backup).		

Crucial Knowledge 1.6 : Ethical, Legal, Cultural and Environmental Concerns

1. Privacy Issues		3. Environmental Impact			
Implications	Implications for personal privacy have arisen due to the vast array of	Fossil Fuels	Fossil fuels are consumed in the manufacturing of computer devices		
	 Cameras and surveillance systems around. The amount of data that we share and that is recorded about us is 	Energy	2% of global energy consumption is used by data centres		
	 growing hugely Free speech / freedom of expression / right to personal privacy vs. Law and Order / Public security / government's role 	Disposal	Old computing equipment is often shipped to countries with lower standards for disposal. People trawl through waste looking for metals to be recycled and sold, exposing themselves to danger.		
2. Cultura	l Issues	4. Impacts of I	Digital Technology on Wider Society		
Implications	 The impact of technology in our daily lives (Technology is changing how people live their lives today. We have an ever increasing dependency on technology in the 21st Century) The digital divide (Access to technology and the Internet is not the same 	Customers	Customers can do more from home with less travelling involved. They can do things 24/7. They can access their data on many devices. Computers can make instant decisions without human involvement. Potentially open to hacking. Less personal		
	 Globalisation (As people around the world become more exposed to technology this impacts on the values and expectations of the people in 	Staff	Job losses as things become more automated. New types of jobs created that didn't previously exist. Up-skilling required		
Positive Effects	 technology this impacts on the values and expectations of the people in each country) In the developing world, the rapid spread of technology, fuelled by the Internet has led to positive cultural changes in developing countries. Easier, faster communication has contributed to the rise of democracy, as well as working towards the alleviation of poverty. Globalisation can also increase cultural awareness and promote diversity 	Companies	Less overheads (salary, rent, utility bills) if fewer staff and buildings required. More ways to target potential customers. Increased importance of data protection and security		
•		Local Communities	Local shops may suffer is town centres are more empty. Elderly and vulnerable customers may have nowhere local to go as local services are scaled back		
Negative Effects	• Diffusion of technology must be carefully controlled to prevent negative cultural consequences.	5. Legislation	5. Legislation		
	 Developing countries risk losing their cultural identities and assimilating themselves into an increasingly westernised world. Challenges of inequality from the uneven distribution of technology within a country also still remain Traditionally, most computer applications are designed by developers in North America. These designers unintentionally apply their cultural values and systems of thought whilst developing computer applications 	Data Protection Act (2018) [implementing GDPR]	 Data must be processed lawfully, fairly and in a transparent manner. Data must only be collected for specified, explicit and legitimate. Data must be adequate, relevant and limited to what is necessary. Data you collect must be accurate and kept up to date. Data you hold must be kept for no longer than is necessary. Data you hold must be processed in a manner that ensures 		
6. Open S	ource vs Proprietary Source		 appropriate security of the personal data. Data controllers must be able to prove that their data protection 		
Open Source	Users can modify and distribute the software. Can be installed on any number of computers. Support provided by the community. May not be fully tested. Users have access to the source code	Computer Misuse Act (1990)	It is illegal to make any unauthorised access to data with the intent to commit further offences		
Proprietary Source	Users cannot modify the software. Protected by CD&P Act. Usually paid for and licensed per user or per computer. Supported by developers. Users do not have access to the source code. Tested by developers prior to release. Although they may run beta programmes.	Copyright Designs and Patents Act (1998)	with the intent to modify data, e.g. viruses It is illegal to copy, modify or distribute software, music, videos or other intellectual property without permission from the author		

Crucial Knowledge 2.1.1 : Algorithms

1. Computat	ional Thinking	3. Flowcharts,	Pseud
Abstraction	The process of removing unnecessary details and including only the relevant details. It is a method of computational thinking that focusses on what is important in problem solving	Flowchart	A meth the for
		Structure Diagram	A diag
Decomposition	manageable parts. Dealing with many different stages of a problem at once is much more difficult than breaking a problem down into a number of smaller problems and solving each, one at time.	Pseudocode	A text algorit progra
Advantages of Program Decomposition	 Makes problems easier to solve. Different people can work on different parts of a problem at the same time reducing development time. 	OCR Reference Language	You m exams
	 Program components developed in one program can easily be used in other programs 		Terminal
Algorithmic Thinking	A way of getting to a solution by identifying the individual steps needed. By creating a set of rules, an algorithm that is followed precisely, leads to an answer. Algorithmic thinking allows solutions to be automated.		Process
2. Input Proc	esses and Output]	
Inputs	 Anything which needs to be supplied to the program so it can meet 		\frown
	 its goals. Often input by the user. Consider an appropriate variable name and data type for the input. 	\parallel <	Decision
Processes	 Consider what calculations need to be performed while the program is running. 	4. Types of Err	ors
Outputs	 Does data need to change formats or data types Consider what your program need to output 	Syntax Error	Syntax of program
	 Consider what form this output need to take. Consider an appropriate variable name and data type for any output 	Logic Errors	Logic e own the
3. Structure	Diagrams	5. Trace Tables	;
 Structure diag They can be users during They are proce Break proble Some areas control of the lowest le These can the 	grams illustrate problem decomposition. used for developers to understand a problem to code and to share with systems analysis. duced using a method known as step-wise refinement. m down using decomposition into ever smaller components. of the program will needed breaking down more than others. vel nodes should achieve a single task. en be coded as a single module or sub-program.	 A vital skill for u for logic is calle Examine a print Take each line a Noting down ar Each variable p A new row shou Trace tables are 	indersta d "Tracin ed extra at a time ny outpu resent ir uld be ac e an exce

Flowcharts,	Pseudocode and OCR Reference Language				
wchart A method of representing the sequences of steps in an algorithm in the form of a diagram. Sometimes called a Flow diagram					
ructure Diagram	Diagram A diagram showing a top-down breakdown of a complex problem				
eudocode	A text based alternative of representing the sequences of steps in an algorithm. Pseudo-code can be thought of as a simplified form of programming code.				
CR Reference nguage	You must be able to read this but you can always use Python in your exams-but be precise				
	Terminal Input/Output Process Sub routine Line				
Types of Erro	ors				
ntax Error	Syntax errors are errors which break the grammatical rules of the programming language. They stop it from being run/translated				
gic Errors	Logic errors are errors which produce unexpected output. On their own they won't stop the program running				
Trace Tables					
A vital skill for u	nderstanding program flow and testing the accuracy of an algorithm				

- for logic is called "Tracing Execution". Examine a printed extract of program code and running thorough the program.
- Take each line at a time and write out in a trace table the current state of each variable. Noting down any output the program produces.
- Each variable present in the program should have its own column in the trace table.
- A new row should be added under any column if the state of a variable changes.
- Trace tables are an excellent way to track down logic errors in a problem.

Crucial Knowledge 2.1.2 : Searching and Sorting Algorithms

1. Binary Sea	arch	4. Insertion Sort			
The Algorithm	Calculate a mid-point in the data set.Check if that is the item to be found.	The Algorithm	 Algorithm The insertion sort inserts each item into its correct position in a data set one at a time. 		
	 If not If the item to be found is lower than the mid-point, repeat on the left half of the data set. If the item to be found is greater than the mid-point, repeat on the right half of the data set. 	Efficiency	 It is a useful algorithm for small data sets. It is particularly useful for inserting items into an already sorted It is usually replaced by more efficient sorting algorithms for landata sets. 		
	• Repeat until the item is found or there are no items left to check.	5. Merge Sort	t		
Requirements / Efficiency	 Requires the data set to be in order of a key field. Can be done with letters as well as numbers-use alphabetical order More efficient than a linear search on average 	The Algorithm	 A very efficient method of performing a sort. Uses a divide and conquer method. Creates two or more identical sub-problems from the largest 		
2. Linear Sea	rch		problem, solving them individually.		
The Algorithm	• Starting from the beginning of a data set, each item is checked in turn to see if it is the one being searched for		 Data set is repeatedly split in half until each item is in its own list. Adjacent lists are then merged back together. 		
Requirements / Efficiency	 Doesn't require the data set to be in order. Will work on any type of storage device. Can be efficient for smaller data sets. Is very inefficient for large data sets 	Efficiency • Works very well for large data sets. Sorted Unsorted The insertion sort algorithm uses two lists, one sorted and one unsorted. 5 2 1 3 4			
3. Bubble Sort		Elements are gradually moved from the unsorted list to the correct position in the sorted list. 1 2 3 4 5 2 5 1 3 4 3 4 4 Relatively used with small lists. 1 2 3 4 5			
 The Algorithm Sorts an unordered list of items. It compares each item with the next one and swaps them if they are out of order. 					
	 The algorithm finishes when no more swaps need to be made. In effect it "bubbles" up the largest (or smallest) item to the end of the list in successive passes. 	The bubble sort algorithm works through a list, comparing pairs of values and swapping them if necessary.5213425134Easy to			
Efficiency	 This is the most inefficient of the sorting algorithms but is very easy to implement. This makes it a popular choice for very small data sets 	It keeps on passing through the list comparing values and making swaps until the list is sorted. Pass 1 2 1 3 5 4 implement; however, it isn't very efficient. Pass 2 1 2 1 3 4 5			
6. For the exam			52136487		
 ✓ Understand the main steps of each algorithm ✓ Understand any pre-requisites of an algorithm ✓ Apply the algorithm to a data set ✓ Identify an algorithm if given the code for it ✓ Show all your steps in detail x To remember the code for these algorithms 		The merge s algorithm word splitting a list individual elem and gradua merging them larger and lar sorted lists unt are in one sorte	sort 52136487 t into 52136487 nents 25134678 Very efficient when used with both large and small lists. into 12354678 4678 t into 12354678 52134678		

Crucial Knowledge 2.2 : Programming Fundamentals 1

1. Key Terms				5. The Common Boolean Operators				
Variable	riable A value stored in memory that can change while the program is running			ange while the program is running				
Constant A value that does not change while the program is running, and is assigned when the program is designed			○─					
Operator		A character that represen	its a	an action,	e.g. "+" is a mathematical Operator			
Assignme	ent	Giving a variable or const	tant	t a value		6. Basic String Manipulation (general)		
Casting		Converting a variable from	m o	one data t	type to another	string.length	Obtains the length of the string in characters	
Input		A value that is entered int	to tł	he progra	am after the program has started	string.upper	Converts the string to uppercase	
Outraut				he program and either saved or displayed to		string.lower	Converts the string to lowercase	
Οιιριι		the user	r the			string.left(n)	Gets the left-most n characters of the string	
2 Com		ee of Doto Timos				string.right(n)	Gets the right-most n characters of the string	
Z. Corr		se of Data Types				string.substring(a,b)	Gets b characters of the string starting at position a	
Integer	Ap	positive or negative whole	nur	mber use	ed when arithmetic will be required	ASC(char)	Returns the numerical ASCII value of char	
Real / Float A positive or negative decimal number		Note : this is NOT the way things are done in any particular programming language. In						
Characte	r As	single alphanumeric				particular Python does things differently		
String Multiple characters joined together [n.b. use this for credit card numbers]		7. Basic File Han	ndling Operations (OCR Reference Language)					
Others Some languages have others, e.g. date, picture		myFile=open("")	Open a file					
3. The	Three	Basic Programming	Со	nstruct	S	myFile.close()	Close a file	
Sequence Executing one instruction after another		myFile.readLine()	Read a line from a file					
Selection		Program branching depe	end	ing on a	condition	myFile.writeLine()	Write a line to a file	
Interation sometimes called looping,		g, is	, is repeating sections of code. Condition		myFile=("")	Create a new file		
controlled or count contro		rolle	illed		string.substring(a,b)	Gets b characters of the string starting at position a		
4. Com	mon	Arithmetic Operators	5	5. Con	nmon Comparison Operators	A Workflow	myFile = open ("sample.txt")	
+	Additio	on		==	ls equal to		while NOT myFile.endOtFile() print (myFile.readl ine())	
-	Subtra	btraction		!=	ls not equal to		ndwhile	
*	Multip	ltiplication		<	Is lesser than		myFile.write("Hello") mvFile.close()	
/	Division			>	Is greater than	Note : this is NOT the way things are done in any particular programming lang		
^	Exponentiation			<= Is lesser than or equal to		particular Python does things differently		
MOD	MOD Modulus			>=	Is greater than or equal to			

Crucial Knowledge 2.2 : Programming Fundamentals 2

1. Storing Data in Records		3. Arrays		
In Text Files	 Stored on the secondary storage (hard disk/SSD/flash). Used to store data when the application is closed. Useful for small volumes of data. E.g. configuration files. 	Definition	An array is a series of memory locations - or 'boxes' - each of which holds a single item of data, but with each box sharing the same name. All data in an array must be of the same data type	
	 Each entry is stored on a new line or separated with an identifier such as a comma or tab. Can require a linear search to find/read data which is slow (if there is no order to the data or record structure). Structured text files E.g. CSV, XML & JSON are popular for storing and exchanging data between applications 	Use	 Indexes usually start at 0 for the first data item (known zero indexed). Arrays may be single or multiple dimensions. Visualise dimensions as a column (single dimension) or table (two dimension) In Memory two dimensional arrays are still stored in a linear fashion 	
In Arrays and Lists	Stored in RAM.Used to store data when a program is running.	4. Sub programs		
In Databases	 Useful for small volumes of data an algorithm is using. Can be single or multi-dimensional allowing for tables of data to be stored. Uses indexes to refer to data items. Efficient algorithms or linear searches can be used to find data 	Why Use them	 Larger programs are developed as a set of sub-programs called subroutines. Structuring code into sub-programs makes the code easier to read and debug. Each sub-program can easily be tested. Sub-programs can be saved into libraries and reused in other programs 	
In Databases	 Often used to store data shared by many users, e.g. ticket booking system 			
	 Data is stored in records and fields. Uses advanced data structures to store data efficiently. Uses very efficient algorithms to search and sort data executed on the servers. More secure than text files. 	Functions	Functions return values and create reusable program components.	
		Procedures	Procedures create a modular structure to a program making it easier to read. They do not return values	
		5. Random Numbers		
Record Structure	 The order of the fields in the database in independent of the code A collection of related fields. A field is a variable. 	Deterministic	Programs that run on computer systems are deterministic - with exactly the same inputs they should produce exactly the same outputs.	
	 Each field in a record can have a different data type. Note the dot syntax when using records: record<dot>Field e.g. car1.Make</dot> 	Real World	Randomness is easy to produce in the real world - spinning a wheel, rolling a dice and so on are millennia-old techniques but producing the same randomness in a computer program is actually rather tricky	
2. SQL		Computer	 Computers do not produce random numbers at all They use complex mathematical techniques to produce a series of numbers that may appear random but are really only an approximation to randomness (called pseudo-random numbers) We refer to them as random numbers anyway 	
SELECT	which fields to be returned. * can be used to indicate all fields			
FROM	which table. Databases can have more than one table, each with their own unique name			
WHERE	records meet a condition. LIKE and % can be used as a wildcard	OCR Reference	myVariable = random (1,6) will produce a random number between 1 and 6	
Example	SELECT name, age, iq FROM person WHERE name LIKE 'FIS%'	Language		

Crucial Knowledge 2.3 : Producing Robust Programs

1. Input Valic	lation	3. Maintainability		
Validation	Does not ensure that the data entered is correct, just that it is possible and sensible	Comments	These explain the purpose of the program, or a section of code. They may also explain any unusual approaches or temporary 'fixes'	
Type Check	The input is in the correct data type. E.g. Integer, Real, String	White Space	Make each section of the code stand out. Use spaces so code is not	
Range Check	The input is within a correct range. E.g. Between 1 and 2		cramped up and hard to read	
Presence Check	Some data has been entered. E.g. Reject blank inputs	Indentation	Mandatory in Python but use indentation to show the flow of the program	
Format Check	The input is in the correct format. E.g. dd/mm/yyyy	Variable Names	Use sensible variable names that have some meaning as to what they	
Length Check	The input has the correct number of characters. E.g. 8 or more chars		are being used for	
Why use input validation?	The program is more robustThe program is more user friendly	Sub Programs	Use Procedures and functions to structure the code and eliminate duplicating portions of it	
	To prevent further errors occurring later in the algorithm	Constants	Declare constants at the top of the program	
2. Anticipatir	ng Misuse	4. Testing		
Division by Zero	In mathematics, there is no number which when multiplied by zero returns a non-zero number. Therefore the arithmetic logic unit cannot compute a division by zero.	Reasons for Testing Iterative Testing	 To ensure there are no errors (bugs) in the code. To check that the program has an acceptable performance and usability. To ensure that unauthorised access is prevented. To check the program meets the requirements Each new module is tested as it is written. Program branches are checked for functionality. Checking new modules do not introduce new errors I not existing code. Tests to ensure the program handles erroneous data and eventional situations. 	
Communication Error	Online systems require connections to host servers. If this connection is dropped, unable to be established or the server is overloaded, it could			
Peripheral Error Disk Error	 potentially cause a program to crash or hang when loading/saving data. Any peripheral may be in an error mode (e.g. paper jam) Programs that read and write to files must handle <u>exceptions</u>, including: The file/folder not being found. The disk being out of space. 			
Authentication	 The data in the file being corrupt. The end of the file being reached Username and password to access systems. Password recovery by e-mailing to an authenticated e-mail address. Encruption of data files. 	Final / Terminal Testing	 Testing that all modules work together (integration testing) Testing the program produces the require results with normal, boundary, invalid and erroneous data. Checking the program meetings the requirements with real data. 	
	 Check for human and not bot attempting access (e.g. reCAPTCHA) 	5. Suitable Test Data		
6. Refining Algorithms		Normal Inputs	Data which should be accepted by a program without causing errors	
What do we mean • Code should anticipate all inputs and it should deal with 'bad'		Boundary Inputs	Data of correct type on the edge of accepted validation boundaries	
by refining?	 data, or missing data, and not crash. It should ensure promots to the user are helpful and that the 	Invalid Inputs	Data of the correct type but outside accepted validation checks	
	input can only be of the correct type	Erroneous Inputs	Data of the incorrect type which should be rejected by a computer	
How to refineMany languages have exception handling commands			green menore is a mput being given mich one is expected	

Crucial Knowledge 2.4 & 2.5 : Boolean Logic, Programming Languages and IDEs

1. Logic Gate	Symbols		3. Levels of Programming Languages		
NOT	>0- AND	OR	Machine Code 1st Generation	 Binary representation of instructions in a format that the CPU can decode and execute. Have an operation code (opcode) instruction and address or data to use (operand). 	
~A 2. Truth Tables	A ^ B A & B	AvB A B	Low-Level Languages 2nd Generation	 Written in Assembly language. Translated by an assembler into machine code. Used for embedded systems and device drivers where instructions the bandware drivers that a second system. 	
A NOT A 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1		A B A OR B 0 0 0 0 1 1 1 0 1 1 1 1		 One instruction translated into one machine code instruction. The code works on one type of processor only. The programmer works with memory directly. Code is harder to write and understand. Memory efficient. Code is fast to execute. 	
4. Translators Assembler	Assembles' assembly language into machine code whole code before execution	e. Translates the	High-Level Languag 3rd Generation	 Source code is written in languages as Python, C++. Translated by a compiler or interpreter into machine code. Makes the writing of computer programs easier by using commands that are like English. One source code instruction translates to many machine code instructions. Code will run on different types of processors. The programmer has lots of data structures to use. Code is quicker and easier to understand and write. Less memory efficient. Code can be slower to execute if it is not optimised. 	
Compiler	Translates source code from high-level languages and then into machine code ready to be processe whole program is translated into machine code be	into object code ed by the CPU. The efore it is run.			
Compiler Advantages	 No need for translation software at run-time, an original source code Speed of execution is faster because code is us 	d no need to share sually optimised.			
Complier Disadvantages	• You cannot compile the program if there are sy anywhere in it which can make it tricky to debut	yntax errors ug.	5. Integrated Development Environments		
Interpreter	 If you change anything you need to recomplie Translates source code from high level languages ready to be processed by the CPU. The program is 	into machine code s translated line by		 Breakpoints - stopping at a line of code during execution. Stepping through lines of code one at a time. Tracing through a program to output the values of variables. 	
Interpreter	line as the program is running.	m will always run	Run Time Environment	Output window.Simulating different devices the program can run on.	
Advantages	 Lasy to write source code because the program stopping when it finds a syntax error. Code does not need to be recompiled when c it is easy to try out commands when the progra finding an error. 	ode is changed, and am has paused after	Usability Functions	 Navigation, showing/hiding sections of code. Formatting source code often in different colours. Text-editor functions Illustrating keyword syntax and auto-completing command entry. 	
Interpreter Disadvantages	 Translation software is needed at run-time, so y the original source code. Speed of execution is slower because the code 	you beed to share e is not optimised	Translator S	Some IDEs have an inbuilt translator to test the program and make small alterations before compiling the final program into an executable file for distribution	