

Equations

•	Kinetic energy = ½ x mass x velocity ²	KE = ½ mv ²
•	Gravitational potential energy = mass x gravitational field strength x height	GPE = mgh
•	Work done = force x distance	E = Fd
•	Power = work done 🕂 time	P = E 🕂 t
•	Efficiency = useful output energy 🛨 total input energy	

Specific heat capacity

• The energy required to raise the temperature of one kilogram of a substance by one degree Celsius

Energy transfers

- Energy cannot be created or destroyed
- Energy is often wasted as heat
- Ways of reducing unwanted energy transfer lubrication, thermal insulation

Renewable resource	Advantages 🕲	Disadvantages 🕲
Solar	No CO ₂ pollution Free	Not work at night/cloudy
Wind	No CO ₂ pollution	Unreliable Eyesore
Tidal	No CO ₂ pollution	Destroys habitats
Hydroelectric	No CO ₂ pollution	Expensive Destroys habitats
Geothermal	No CO ₂ pollution	Few areas suitable
Biofuel	Carbon neutral	Land needed to grow

Non -renewable resource	Advantages 🕲	Disadvantages 😕
Fossil fuels: Coal Oil Gas	Readily available	CO ₂ pollution Acid rain Greenhouse effect Climate change
Nuclear	No CO ₂ pollution	Expensive Radioactive waste

Topic 1

Energy

Equations

Equations		switch (open)	
 Potential difference = current x resistance 	V = IR		
 Charge = current x time 	Q = It	0	owitch (closed)
 Power = current x voltage 	P = IV		switch (closed)
 Power = current² x resistance 	$P = I^2R$		
 Energy transferred = power x time 	E = Pt	-1⊢	cell
 Energy transferred = charge x potential difference 	E = QV		
Electric current		- +	battery

- Is the flow of electrical charge
- Measured in amps (A)

Series circuits

- Current is the same through all components
- Potential difference is shared by components
- Total resistance of components is the sum (added total) of the resistance of each component

Parallel circuits

- Current is shared by components
- Potential difference is the same through all components
- Total resistance is less than the resistance of the smallest individual resistor

Mains electricity and wiring in plugs

- Is an ac supply frequency of 50 Hz and 230 V
- Live wire brown
- Neutral wire blue
- Earth wire green and yellow stripes

The National Grid

- · A system of cables and transformers linking power stations to homes
- Step-up transformers increase the potential difference
- Step-down transformers reduce the potential difference
- This prevents energy being lost in the cables

ammeter

voltmeter

switch (open)

diode

Equations

Density = mass ÷ volume

ρ=m 🕂 V

Working out the density of an object

- Measure mass using scales
- Measure volume using a ruler if the object is a regular shaped solid
- If object is irregular shaped use a displacement can to measure volume
- Fill displacement can with water
- Submerge the object
- Catch the displaced water in a measuring cylinder this is the volume
- Calculate density using the equations: Density = mass volume

Particle model of matter

Changes of state

- Solid \rightarrow liquid: melting
- Liquid \rightarrow gas: evaporation
- Gas → liquid: condensation
- Liquid \rightarrow solid: freezing
- Solid → gas: sublimation

Particle motion in gases

- Temperature of a gas is related to the average kinetic energy of the molecules
- At a fixed volume, higher temperature = higher pressure

Specific heat capacity

• The amount of energy required to raise the temperature of one kilogram of a substance by one degree Celsius

Specific latent heat

• The amount of energy required to change the state of one kilogram of a substance with no change in temperature

Topic 3 Particle model of matter

Atomic models

- Plum pudding model negative electrons embedded throughout the atom, rest of atom is positive
- Nuclear model most of the mass of an atom in the nucleus, most of the atom is empty space

Structure of the atom

- Atomic number number of protons in an atom
- Atomic mass number of protons + neutrons added together
- · Isotopes are atoms of the same element with a different number of neutrons

Radioactive decay

- Nucleus giving out radiation to become more stable
- This is a random process
- Activity is measured in becquerel (Bq)

Nuclear radiation

- Alpha particle two neutrons and two protons
- Beta particle high speed electron
- Gamma ray electromagnetic radiation
- Neutron

Radiation	Mass	Charge	Range in air	Penetration power	lonising ability
Alpha	4	+2	A few cm	Low	High
Beta	Very small	-1	A few m	Medium	Medium
Gamma	0	0	Very large	High	Low

Half-life

- The time it takes for half the number of radioactive nuclei to decay
- Half-life of a given isotope is always the same

Radioactive contamination and irradiation

- · Contamination is the unwanted presence of materials containing radioactive atoms
- Irradiation is exposing an object to nuclear radiation

Precautions when using radioactive materials

- Tweezers
- Point away from the body
- Hold at arm's length
- Keep samples in lead lined boxes

Topic 4 Atomic structure

Equations

•	Speed = distance 🛨 time	v = s 🕂 t	
•	Acceleration = change in velocity 🛨 time	a = (v – u) 🛨 t	
•	Weight = mass x gravitational field strength	W = mg	
•	Force = mass x acceleration	F = ma	
•	Work done = force x distance	E = Fd	
•	Force = spring constant x extension	F = ke	
•	Momentum = mass x velocity	p = mv	(Higher only)

Scalars and vectors

- Scalars have magnitude (number) only. Eg speed, distance, time, energy, mass
- Vectors have magnitude and direction. Eg velocity, displacement, acceleration, force, momentum

Contact and non-contact forces

- Contact forces objects touching. Eg friction, air resistance, normal contact force
- Non-contact forces objects not touching. Eg gravity, electrostatic, magnetic

Acceleration

- Acceleration is the change in velocity
- An object that slows down is decelerating (negative acceleration)

Newton's Laws

- · First Law An object at rest will remain at rest unless a force acts on it
- First Law A moving object will continue to move in a straight line at a constant velocity unless a force acts on it
- Second Law The acceleration of an object is proportional to the resultant force acting on the object
- · Third Law When two objects interact they exert equal and opposite forces on each other

Stopping distances and braking distance

- Stopping distance = thinking distance + braking distance
- Factors that affect braking distance icy or wet roads, worn tyres and brakes

Distance-time graph

Velocity-time graph

Distance travelled can be worked out by finding the area under the graph

Equations

• Wavespeed = frequency x wavelength

 $v = f x \lambda$

Transverse waves

- Motion of particles is at right angles to direction of the wave
- Water waves •
- EM waves

Longitudinal waves

- Motion of particles is in the same direction as the movement of the wave •
- Sound waves •

Frequency and period

- Frequency is the number of waves passing a point in 1 second
- · Period is the time taken for one wave to pass a point

EM wave	Uses ©	Dangers 😕
Radio waves	Communication Broadcasting – TV, radio	No danger
Microwaves	Cooking food, communication Mobile phones	Slight heating effect, depends on the frequency
Infra-red	Cooking food, night vision goggles Remote controls	Burns to skin
Visible light	Photography, fibre optics	Damage to eyes if bright enough
Ultraviolet	Security marking, sterilising water Sun tanning	Mutation in cells/DNA Cancer
X-rays	Hospitals, Luggage - airports	Mutation in cells/DNA Cancer
Gamma rays	Sterilising medical tools Detect/treat cancer, sterilising food	Mutation in cells/DNA Cancer

Long wavelength							Short wavelength	
	Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays	
	Low frequency High frequency							

uqu

Magnets

- Like poles repel, opposite poles attract
- Magnetic force strongest at the poles of a magnet
- A permanent magnet produces its own magnetic field
- An induced magnet is a material that becomes a magnet when placed in a magnetic field
- Magnetic materials iron, steel, cobalt, nickel
- Magnetic field lines point from the north seeking pole to the south seeking pole
- Two flat magnets produce a uniform magnetic field

Electromagnetism

- When a current flows through a wire a magnetic field is produced around the wire
- A solenoid is a coil of wire
- The magnetic field around a solenoid is similar in shape to that of a bar magnet
- Adding an iron core increases the strength of the magnetic field in a solenoid
- An electromagnet is a solenoid with an iron core

b The magnetic field inside the solenoid is almost uniform near the centre of the coil.

Topic 7 Magnetism and electromagnetism

Equations

- Kinetic energy = _____
- Gravitational potential energy = ______
- Work done = ______
- Power = _____
- Efficiency = ______

Specific heat capacity

The energy required to ______

Energy transfers

- Energy cannot be ______
- Energy is often wasted ______
- Ways of reducing unwanted energy transfer _______

Renewable resource	Advantages 🕲	Disadvantages 🕲

Non -renewable resource	Advantages 🕲	Disadvantages 🕲

Topic 1 Energy

Equations	o switch (open)
Potential difference =	-	
• Charge =	switch (closed)
• Power =	-	
Power =	+	
Energy transferred =		
Energy transferred =	-	
• Electric current		
• Is the		
Measured	- () diode	
Series circuits	\bigcirc	
Current is		
Potential difference is		
Total resistance of components is		
Parallel circuits		
Current is		
Potential difference is		
Total resistance is		
 Mains electricity and wiring in plugs Is an ac supply – frequency of Hz and V Live wire – Neutral wire – 		
• Earth wire –		
 The National Grid A system of cables and transformers linking power stations to homes Step-up transformers increase	- resistor	
→ lamp → A → ammeter → fuse → thermistor	Variable re	esistor
-V- voltmeter	Topic 2 Electrici	ty

Equations

• Density = _____

Working out the density of an object

- Measure mass ______
- Measure volume ______
- If object is irregular shaped use a ______
- Fill _____
 - _____the object
- Catch the ______
- Calculate ______

..

 Particle model of matter

 • Solid
 Liquid
 Gas

Changes of state

- Solid → liquid: ______
- Liquid → gas: ______
- Gas → liquid: ______
- Liquid → solid: ______
- Solid → gas: _____

Particle motion in gases

- Temperature of a gas is related ______
- At a fixed volume, higher temperature = ______

Specific heat capacity

The amount of energy required to ______

Specific latent heat

The amount of energy required to ______

Atomic models

- Plum pudding model _____
- Nuclear model ______

Structure of the atom

- Atomic number ______
- Atomic mass ______
- Isotopes are ______

Radioactive decay

- Nucleus giving out radiation to become more ______
- This is a _____ process
- Activity is measured in ______

Nuclear radiation

- Alpha particle ______
- Beta particle ______
- Gamma ray _____
 - Neutron

Radiation	Mass	Charge	Range in air	Penetration power	lonising ability
Alpha					
Beta					
Gamma					

Half-life

- The time it takes for ______
- Half-life of a given isotope is always ______

Radioactive contamination and irradiation

- Contamination is ______
- Irradiation is ______

Precautions when using radioactive materials

• ______

Topic 4 Atomic structure

Equations

• Speed =	_
• Acceleration =	_
• Weight =	_
• Force =	_
• Work done =	_
• Force =	
• Momentum =	_ (Higher only)
Scalars and vectors	
Scalars have	
Vectors have	
Contact and non-contact forces	
Contact forces –	
Non-contact forces	
Acceleration	
Acceleration is	
An object that slows down is	
Newton's Laws	
First Law - An object at rest will	
First Law - A moving object will	
Second Law	
• Third Law	
Stopping distances and braking distance	

- Stopping distance = _____
- Factors that affect braking distance _

Distance-time graph

Velocity-time graph

Distance travelled can be worked out by finding the area under the graph

Equations	
• wavespeeu –	
Transverse waves	
Motion of particles is at	
Example:	
Example:	
Longitudinal waves	
Motion of particles is	
• Example:	
	amplitude wavelength crest
Frequency and period	

Frequenc	iy and	perio
_		

- Frequency is _____ ٠
- Period is _____

EM wave	Uses ©	Dangers 😕
Radio waves		
Microwaves		
Infra-red		
Visible light		
Ultraviolet		
X-rays		
Gamma rays		

Long wavelength						hort wavelength	
	Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays
	Low freq	uency					High frequency

Topic 6 Waves

Magnets

- Like poles _____, opposite poles ______
- Magnetic force strongest ______
- A permanent magnet produces ______
- An induced magnet is ______
- Magnetic materials ______
- Magnetic field lines point from the ______ to the ______
- Two flat magnets produce a ______

Electromagnetism

- When a current flows through a wire a ______
- A solenoid is ____
- The magnetic field around a solenoid is similar in shape to that of a ______
- Adding an ______ increases the strength of the magnetic field in a solenoid
- An electromagnet is a solenoid with an iron core

b The magnetic field inside the solenoid is almost uniform near the centre of the coil.

Topic 7 Magnetism and electromagnetism