Crucial Knowledge – Stage 1 - Number

BIDMAS The order you do calculations in: B rackets I ndices D ivision	Place Value • The 'column values' of numbers Thousands Hundreds Tens Units Decimal 1/10 1/100 1/100
M ultiplication A ddition S ubtraction	 <u>Addition (or Sum) +</u> Subtraction (or Difference) – Multiplication (or Product) x Division ÷ Negative Numbers Adding or subtracting – USE A <u>NUMBER LINE</u> Multiplying or dividing use the rules +x + = + +x - = - + + + - = +
 Fractions Decimals and Different ways of saying part of You can change from one to t 	Percentages $-x + = -$ of a whole number $-x - = +$ $-x - = +$ $-\div - = +$

•

•

Rounding

Decimal places (column after decimal point)

Significant Figures (highest value column)

Prime Numbers

- Have exactly two factors
- No other whole numbers, except **1** and **itself** divide into them

Crucial Knowledge – Stage 1 - Number

Always a number

between 1 and 10

Highest Common Factor (HCF) Lowest Common Multiple (LCM)

- Write down all the factors from the numbers and find the biggest value on both lists – This is the Highest Common Factor
- Write down all the multiples of the two numbers and find the smallest on both lists – This is the Lowest Common Multiple

Standard Form

- A way of writing very **BIG** or very **SMALL** numbers
- Think **BIG** numbers distance between planets and **SMALL** numbers sizes of atoms.
- BIG numbers have POSITIVE powers and SMALL number have
 NEGATIVE powers.
 Always a multiply
 Always the number 10

Positive for very large numbers Negative for very small numbers

Percentages

- An amount out of 100
- To Calculate a percentage of an amount (What is 40% of £50)
 Percentage ÷ 100 x amount (40 ÷ 100 x 50 = £20)
- To change to a percentage (you score 4 out of 5 in a test, what percentage is this?)

Amount you got \div what it is out of x 100 (4 \div 5 x 100 = 80%)

Fractions

- Multiplying Multiply top by top and bottom by bottom.
- Dividing 'Keep Change Flip'.
- Addition or Subtraction You need same bottom number (denominator).

<u>Crucial Knowledge – Stage 1 – Ratio and Proportion</u>

 Ratio as a measure A ratio is a comparison of parts Use a colon (:) to separate parts of a ratio A colon is read as 'to' 2 or 3 parts Understand the parts add up and stay in proportion 	 Equivalent ratios Same values but different numbers Values used can get larger, as well as smaller Do same to all parts 3:6 ×4↓ ↓×4 12:24 	 Dividing a given ratio The question matches the order of items to the order of parts in the ratio. The first thing mentioned gets the first part of the ratio Find the total number of parts in the ratio (+) Divide the amount to be shared by the total parts (÷)
 Cancelling ratios Like simplifying fractions Look for common factors Do the same to both parts of the ratio 3:6 +3↓ ↓+3 1:2 	Cin, m, km)Be able to convert to common unit before calculating Convert units of timeConvert units of measure (ml, l) Convert units of mass (g, kg, t)Who gets how much? A: $1+2 = 3$ parts in total £45 ÷ 3 = £15 per part $1:2$ x15 15:30	 Multiply by each part of the ratio (x Example Q: Adam and Ben share £45 in the ratio 1:2. Who gets how much? A: 1 + 2 = 3 parts in total £45 ÷ 3 = £15 per part 1:2 x15, x15, x15

Crucial Knowledge – Stage 1 – Geometry and Measures

Coordinates

- Remember "along the corridor then up the stairs"
- X and y values written on the axes
- 4 quadrants

Area and perimeter

- Perimeter is distance around shape
- Area is space inside a shape (2D), measure in square units
- Rectangle *Area* = *length* × *width*
- Triangle $Area = \frac{1}{2}(base \times height)$ Only use diagonals for perimeter
- Trapezium $Area = \frac{1}{2}(a + b) \times height$ Only use diagonals for perimeter
- Circle $Area = \pi \times radius^2$ $Circumference = 2\pi \times radius$ Circumference is the perimeter of a circle

Use of Protractor

- Measure angles accurately
- Draw bearings

Angle Reasoning

- Angles on straight line = 180°
- Angles in a triangle = 180°
- Vertically opposite angles are always equal
- Angles in quadrilateral = 360°
- Angles at a point = 360°

Types of Triangles

- Scalene all sides and angles are different
- Isosceles 2 sides and angles are the same
- Equilateral 3 sides and angles are the same
- Right contains a right angle

Terminology Shape

- Edge Where 2 faces meet
- Vertices Where 3 faces meet
- Face side of a 3d shape
- Quadrilateral a 4 sided polygon
- Polygon a 2d shape with straight sides
- Acute an angle less than 90°
- Obtuse an angle between 90° and 180°
- Reflex an angle more than 180°

Crucial Knowledge – Stage 1 – Algebra

Algebra terminology

- 2y means 2 multiplied by the value of 'y'.
 So if y = 5 then 2y = 2 x 5 = 10
- y^2 the value of 'y' multiplied by itself. So if y = 5 then y^2 = 5 x 5 = 25

Substitution

- We get rid of our letters by putting number in to create an answer.
- We are normally given formula and values to put in, but sometimes we have to create the expression and then put values in.
- We need to know about terminology to do this.

You are told $E = \frac{1}{2} mv^2$ Calculate E when m = 10 and v = 2.5

> E = ½ x 10 x 2.5 x 2.5 E = 31.25

<u>Simplifying – Collecting like terms</u>

- We can only bring **'like terms'** together to simplify the expression
- Rewrite to get your 'like terms together'
 <u>Adding and Subtracting</u>

4a + 3b + 6a - b = 4a + 6a + 3b - b = 10a + 2b $3f^{2} + 5g^{2} + 3f^{2} - 7g^{2} = 3f^{2} + 3f^{2} + 5g^{2} - 7g^{2} = 6f^{2} - 2g^{2}$

Multiplying and Dividing

 $4a \times 6a = 24a^2$ (Multiply numbers and add powers) $30b^5 \div 5b^2 = 6b^3$ (Divide numbers and subtract powers)

Multiplying out single brackets• Bracket create an order (BIDMAS)• Brackets are also an invisible multiply
6 (a + 3) = 6 x a + 6 x 3 = 6a + 18
5 (2b - a) = 5 x 2b + 5 x - a = 10b - 5a
 $2m (3m - 5) = 2m x 3m + 2m x - 5 = 6m^2 - 10m$

Crucial Knowledge – Stage 1 – Algebra

Solving equations

- To get a numerical answer for a letter
- We have to do the same to both sides of the equals sign
- If we move things across the equals sign the operator changes to be opposite
 Solve 4y + 1 = 17
 Move +1 over to become -1

4y = 17 -1 so 4y = 16

```
Move x4 over to become \div4 so y = 16\div4
```

<u>y = 4</u>

Solve 2(3y + 1) = 20Expand bracket $2 \times 3y = 6y$ and $2 \times 1 = 2$ so 6y + 2 = 20 Move +2 over to become -2 6y = 20 - 2 so 6y = 18Move x6 over to become $\div 6$ so $y = 18 \div 6$ y = 3

Factorising

- The process of putting things into brackets
- We can have numerical or algebraic factors
- The 'best' factor goes on the outside of the brackets
- You can check your answer by expanding bracket <u>Factorise 10a + 5b</u>

'best' factor is 5 so this goes on outside of brackets 5(?????) 2a + b in brackets because when these are multiplied by 5 you get your 10a and 5b

So 5(2a + b) is answer

Factorise 20a² + 4a

'best' factor is 4 number wise and a algebra wise it is a so this goes on outside of brackets 4a(??????)

5a + 1 in brackets because when these are multiplied by 4a you get your 20a² and 4a

So 4a(5a + 1) is answer

Crucial Knowledge – Stage 1 – Data and Probability

Mean, median, mode and range

- You must be able to get measures from a list of values or values in a frequency table
- $MEAN = Total of values \div Number of values$
- MEDIAN The middle value when written in size order
- MODE The value that occurs the most often
- RANGE Maximum value Minimum value

Sample space diagrams

A list of all possible outcomes from an event. We use this to help calculate probabilities

Probability and relative frequency

A list of all probabilities adds up to 1

Times occured

Relative frequency =-Number of trials

Displaying data

Stem and Leaf **** Stem Leaf A 4 4 4 2 3 1 1 7 2 2 2 2 2 34577 2 2 2 4 001

Interpreting data

- Get values from bar charts
- Get values from pie Charts
- Use key to get values from Stem and Leaf diagram
- Use key to get values from Pictogram

Probability definition and scale

- Outcome A possible result of an experiment ٠
- Event A set of outcomes ٠
- Impossible An outcome that cannot happen
- Certain An event that must happen •