Crucial Knowledge - Stage 1 - Number

BIDMAS
The order you do calculations in:
B rackets
I ndices
D ivision
M ultiplication
A ddition
S ubtraction

Place Value

- The 'column values' of numbers

\ldots	Thousands	Hundreds	Tens	Units	Decimal Point	$1 / 10$	$1 / 100$	$1 / 1000$	\ldots.

4 Operators

- Addition (or Sum) +
- Subtraction (or Difference) -
- Multiplication (or Product) \mathbf{x}
- Division -

Fractions Decimals and Percentages

- Different ways of saying part of a whole number
- You can change from one to the other

Negative Numbers

- Adding or subtracting - USE A NUMBER LINE
- Multiplying or dividing use the rules

$+x+=+$	$+\div+=+$
$+x-=-$	$+\div-=-$
$-x+=-$	$-\div+=-$
$-x-=+$	$-\div-=+$

$+x-=-\quad+\div-=-$
$-\mathrm{x}-=+\quad-\div-=+$

Prime Numbers

- Have exactly two factors
- No other whole numbers, except 1 and itself divide into them

Rounding

- Decimal places (column after decimal point)
- Significant Figures (highest value column)

Crucial Knowledge - Stage 1 - Number

Highest Common Factor (HCF) Lowest Common Multiple (LCM)

- Write down all the factors from the numbers and find the biggest value on both lists - This is the Highest Common Factor
- Write down all the multiples of the two numbers and find the smallest on both lists - This is the Lowest Common Multiple

Standard Form

- A way of writing very BIG or very SMALL numbers
- Think BIG numbers - distance between planets and SMALL numbers - sizes of atoms.
- BIG numbers have POSITIVE powers and SMALL number have NEGATIVE powers.

Always a multiply
Always the number 10
4×10^{6}
Positive for very large numbers Negative for very small numbers

Percentages

- An amount out of 100
- To Calculate a percentage of an amount (What is $\mathbf{4 0 \%}$ of $£ 50$)

Percentage $\div 100 \times$ amount ($40 \div 100 \times 50=£ 20$)

- To change to a percentage (you score 4 out of 5 in a test, what percentage is this?)

Amount you got \div what it is out of $\times 100(4 \div 5 \times 100=80 \%)$

Fractions

- Multiplying - Multiply top by top and bottom by bottom.
- Dividing - 'Keep Change Flip’.
- Addition or Subtraction - You need same bottom number (denominator).

Crucial Knowledge - Stage 1 - Ratio and Proportion

Ratio as a measure

- A ratio is a comparison of parts
- Use a colon (:) to separate parts of a ratio
- A colon is read as 'to'
- 2 or 3 parts
- Understand the parts add up and stay in proportion

Cancelling ratios

- Like simplifying fractions
- Look for common factors
- Do the same to both parts of the ratio

3:6
$\div 3 \downarrow \downarrow \times 3$
1:2

Equivalent ratios

- Same values but different numbers
- Values used can get larger, as well as smaller
- Do same to all parts

3:6

$\times 4 \downarrow \downarrow \times 4$
12:24
Basic unit conversions

- Convert units of length (mm, cm, m, km)
- Be able to convert to common unit before calculating
- Convert units of time
- Convert units of measure (ml, I)
- Convert units of mass ($\mathrm{g}, \mathrm{kg}, \mathrm{t}$)

Dividing a given ratio

- The question matches the order of items to the order of parts in the ratio. The first thing mentioned gets the first part of the ratio
- Find the total number of parts in the ratio (+)
- Divide the amount to be shared by the total parts (\div)
- Multiply by each part of the ratio (x

Example

Q: Adam and Ben share $£ 45$ in the ratio 1:2. Who gets how much?
A: $\quad 1+2=3$ parts in total
$\mathbf{£ 4 5} \div \mathbf{3}=\mathbf{£ 1 5}$ per part
1:2
x15 x15
15:30
Adam gets $£ 15$ and Ben gets $£ \mathbf{3 0}$

Crucial Knowledge - Stage 1 - Geometry and Measures

Coordinates

- Remember "along the corridor then up the stairs"
- X and y values written on the axes
- 4 quadrants

Area and perimeter

- Perimeter is distance around shape
- Area is space inside a shape (2D), measure in square units
- Rectangle Area $=$ length \times width
- Triangle Area $=\frac{1}{2}$ (base \times height $)$ Only use diagonals for perimeter
- Trapezium Area $=\frac{1}{2}(a+b) \times$ height Only use diagonals for perimeter
- Circle Area $=\pi \times$ radius 2

Circumference $=2 \pi \times$ radius
Circumference is the perimeter of a circle

Use of Protractor

- Measure angles accurately
- Draw bearings

Angle Reasoning

- Angles on straight line $=180^{\circ}$
- Angles in a triangle $=180^{\circ}$
- Vertically opposite angles are always equal
- Angles in quadrilateral $=360^{\circ}$
- Angles at a point $=360^{\circ}$

Terminology Shape

- Edge - Where 2 faces meet
- Vertices - Where 3 faces meet
- Face - side of a 3d shape
- Quadrilateral - a 4 sided polygon
- Polygon - a 2d shape with straight sides
- Acute - an angle less than 90°
- Obtuse - an angle between 90° and 180°
- Reflex - an angle more than 180°

Types of Triangles

- Scalene - all sides and angles are different
- Isosceles - 2 sides and angles are the same
- Equilateral - 3 sides and angles are the same
- Right - contains a right angle

Crucial Knowledge - Stage 1-Algebra

Algebra terminology

- $2 y$ means 2 multiplied by the value of ' y '.

$$
\text { So if } y=5 \text { then } 2 y=2 \times 5=10
$$

- y^{2} the value of ' y ' multiplied by itself.

$$
\text { So if } y=5 \text { then } y^{2}=5 \times 5=25
$$

Substitution

- We get rid of our letters by putting number in to create an answer.
- We are normally given formula and values to put in, but sometimes we have to create the expression and then put values in.
- We need to know about terminology to do this.

$$
\text { You are told } \mathrm{E}=1 / 2 \mathrm{mv}^{2}
$$

Calculate E when $m=10$ and $v=2.5$

$$
\begin{gathered}
E=1 / 2 \times 10 \times 2.5 \times 2.5 \\
E=31.25
\end{gathered}
$$

Simplifying - Collecting like terms

- We can only bring 'like terms' together to simplify the expression
- Rewrite to get your 'like terms together'

Adding and Subtracting
$4 a+3 b+6 a-b=4 a+6 a+3 b-b=10 a+2 b$
$3 f^{2}+5 g^{2}+3 f^{2}-7 g^{2}=3 f^{2}+3 f^{2}+5 g^{2}-7 g^{2}=6 f^{2}-2 g^{2}$

Multiplying and Dividing

$4 a \times 6 a=24 a^{2}$ (Multiply numbers and add powers) $30 b^{5} \div 5 b^{2}=6 b^{3}$ (Divide numbers and subtract powers)

Multiplying out single brackets

- Bracket create an order (BIDMAS)
- Brackets are also an invisible multiply

$$
6(a+3)=6 \times a+6 \times 3=6 a+18
$$

$5(2 b-a)=5 \times 2 b+5 x-a=10 b-5 a$

$$
2 m(3 m-5)=2 m \times 3 m+2 m x-5=6 m^{2}-10 m
$$

Crucial Knowledge - Stage 1-Algebra

Solving equations

- To get a numerical answer for a letter
- We have to do the same to both sides of the equals sign
- If we move things across the equals sign the operator changes to be opposite

$$
\text { Solve } 4 y+1 \text { = } 17
$$

Move +1 over to become -1
$4 y=17-1$ so $4 y=16$
Move $x 4$ over to become $\div 4$ so $y=16 \div 4$

$$
y=4
$$

Solve $2(3 y+1)=20$
Expand bracket
$2 \times 3 y=6 y$ and $2 \times 1=2$ so
$6 y+2=20$ Move +2 over to become -2

$$
6 y=20-2 \text { so } 6 y=18
$$

Move x6 over to become $\div 6$ so $y=18 \div 6$

$$
y=3
$$

Factorising

- The process of putting things into brackets
- We can have numerical or algebraic factors
- The 'best' factor goes on the outside of the brackets
- You can check your answer by expanding bracket

$$
\text { Factorise } 10 a+5 b
$$

'best' factor is 5 so this goes on outside of brackets 5(??????) $2 a+b$ in brackets because when these are multiplied by 5 you get your 10a and 5b

$$
\text { So } 5(2 a+b) \text { is answer }
$$

$$
\text { Factorise } 20 a^{2}+4 a
$$

'best' factor is 4 number wise and a algebra wise it is a so this goes on outside of brackets 4a(??????)
$5 a+1$ in brackets because when these are multiplied by 4 a you get your 20a² and $4 a$

$$
\text { So } 4 \mathrm{a}(5 \mathrm{a}+1) \text { is answer }
$$

Crucial Knowledge - Stage 1 - Data and Probability

Mean, median, mode and range

- You must be able to get measures from a list of values or values in a frequency table
- MEAN $=$ Total of values \div Number of values
- MEDIAN - The middle value when written in size order
- MODE - The value that occurs the most often
- RANGE - Maximum value - Minimum value

Sample space diagrams

- A list of all possible outcomes from an event. We use this to help calculate probabilities

Probability and relative frequency

- A list of all probabilities adds up to 1
- Relative frequency $=\frac{\text { Times occured }}{\text { Number of trials }}$

Interpreting data

- Get values from bar charts
- Get values from pie Charts
- Use key to get values from Stem and Leaf diagram
- Use key to get values from Pictogram

Probability definition and scale

- Outcome - A possible result of an experiment
- Event-A set of outcomes
- Impossible - An outcome that cannot happen
- Certain - An event that must happen

