Crucial Knowledge - Stage 2 - Number

Percentage Change

- If a value goes up, it's a percentage increase.
- If a value goes down, it's a percentage decrease.
- We work out percentage of amount and either add it on or subtract it from our starting value
- Or we work out the percentage change by working out the difference in values and dividing by our original value and then multiplying by 100 .

Powers

- If we multiply powers we add. $y^{3} x y^{4}=y^{(3+4)}=y^{7}$
- If we divide powers we subtract. $y^{10} \div y^{6}=y^{(10-6)}=y^{4}$
- Anything to the power zero is always 1

Product of Primes

- Any value split into prime numbers MULTIPLIED together.
- First 5 prime numbers are 2,3,5, 7 and 11.
- Sometimes we put into a VENN diagram to calculate LCM and HCF.

Inequalities

- Understand inequality symbols $<>\leq \geq$
- List values that satisfy a inequality.
- Show by drawing on a number line values that satisfy inequality.

Estimation

- An answer close to the exact answer.
- All values are rounded to 1 significant figure.
- Follow BIDMAS to get your estimation.

Use of Calculator

- Must be able to use brackets () on calculator to get an answer to multi stage calculations.
- Must be able to use powers on calculator.
- Must be able to use for Standard Form calculations .
- Must be able to use fraction button for all multi tier calculations.
- Must be able to use calculator for percentage calculations.

Crucial Knowledge - Stage 2 - Ratio and Proportion

Unit conversions

- Area conversions

Use the same conversions as for length, but squared

- Volume conversions Use the same conversions as for length, but cubed
- Speed $=\frac{\text { distance }}{\text { time }}$
- Units for speed include metres per second (m / s) and kilometres per hour (kmph)

Ratio calculations

- Use a ratio to scale measurements up and down
- Examples include using maps and scale drawings
- Size calculations relative to scale and real life

Recipe Scaling

- Work out we have enough to complete
- How much of something do we need

Example:
Q: A recipe uses 300 g of flour and 150 g of butter to make a cake for 4 people. How much of each ingredient is needed to bake a cake for 6 people.

A: $6 \div 4=1.5$ (scale factor). $300 \mathrm{~g} \times 1.5=450 \mathrm{~g}$ flour
$150 \times 1.5=225 \mathrm{~g}$ butter

Crucial Knowledge - Stage 2 - Geometry and Measures

Pythagoras

b

- $a^{2}+b^{2}=c^{2}$

Square root c^{2} to find Hypotenuse

- $c^{2}+a^{2}=b^{2}$

Square root b^{2} to find shorter side

Plans and Elevations

- Images from 3 different directions
- Front, side and plan
- Work out size or volume
- Draw 3 images from a 3D drawing
- Draw a 3D image from 3 plans and elevations

Polygons

- A shape with 3 or more straight sides
- Total Interior Angles $=(\mathrm{n}-2) \times 180$
- Interior + Exterior $=180^{\circ}$
- Sum of Exterior $=360^{\circ}$

Basic transformations

- Reflections

Over straight lines ($\mathrm{y}=, \mathrm{x}=$) including diagonals ($\mathrm{y}=\mathrm{x}$)

- Rotations

Direction, Distance and Centre

- Translation

$$
\binom{\text { right }+ \text { left }-}{u p+\text { down }-}
$$

- Enlargement

Scale factor and Centre

Bearings

- 3 digit format
- Measure clockwise from North, 000°
- Be able to draw and add onto a diagram
- Measure reflex angles using a compass
- Calculations using North for parallel lines

Angles with parallel lines

- F-Corresponding Always equal
- Z - Alternate Always equal
- C-Co-Interior Always add to 180°

Crucial Knowledge - Stage 2-Algebra

Expanding Double Brackets - FOIL

- Two brackets with nothing between them
- $(x+2)(x+5)-$ This is a double bracket
- $4(x+2)+5(x+5)-$ This is 2 single brackets
- When expanding them think First Outer Inner Last
- To start with, you get 4 terms out of double brackets
- You must simplify to 3 or sometimes 2 values

Straight line graphs

- Remember $y=$? (this is horizontal line)
- Remember $x=$? (this is vertical line)
- You have to substitute values into equations to plot the graph
- $y=m x+c$ where $y=y$ coordinate, $m=$ gradient (how steep graph is), $x=x$ coordinate and $c=$ intercept (where we cut y axis)
- Parallel lines have same gradients
- Gradient is RISE \div RUN a positive number we climb and a negative value we ski down

Linear sequences

- A list of numbers that goes up or down by the same amount each time
- Work out Term to Term rule
- Work out your Zero Term
- Form your equation for the nth term
- A value appears if a sequence, the nth term equation is solved with an integer answer.

Solving linear equations - more advanced

- Fractional or non integer - Follow your normal rules, be prepared to give your answer as a fraction, improper fraction or mixed number. It might be positive or negative.
- x on both side - Before you start identify the smallest algebra term and do the opposite of this to both sides of the equation. Then, follow your rules to solve as normal.

Crucial Knowledge - Stage 2 - Data and Probability

Drawing pie charts

- Angles in a pie chart

$$
=\frac{\text { Frequency }}{\text { Total frequency }} \times 360
$$

- Use a protractor and ruler to draw accurately

Probability trees

- Used to show outcomes of multiple events
- All branches add up to 1
- Multiply along branches to find probabilities
- Add multiple routes through tree

Grouped data

- Find Mean from a frequency table
- Find Estimated Mean from grouped frequency table
- Calculated Modal class interval
- Calculate Median class interval
- A class interval means a group of data

Two way tables

- Values add up vertically and horizontally
- Totals can be given but may need to be calculated
- Used to simplify information

Stem and leaf diagrams

- Pick correct stems
- Leaves are always single digits
- Ascending order
- Use of key
- Obtain mean, median, mode and range from diagram

Mean, median, mode and range with missing values

- Be able to calculate missing values from a data set when given some of the values.
Example: The mean of the following 5 numbers is 9 :
[6] [7] [?] [11] [13]
What is the missing number?

Total value $=5 \times 9=45$
Known total $=6+7+11+13=37$
Missing value $=45-37=8$

