

KS4 Computer Science – Crucial Knowlegde Glossary

No. Spec Section Sub-topic Term Definition
1. 1.1.1 1.1 Systems architecture Architecture of the CPU CPU Central Processing Unit: “The main part of the computer (the brain), consisting of

the registers, ALU and control unit.”
2. 1.1.1 1.1 Systems architecture Architecture of the CPU Fetch-execute cycle “The complete process of retrieving an instruction from store, decoding it and

carrying it out. Also known as the instruction cycle.”
3. 1.1.1 1.1 Systems architecture Architecture of the CPU ALU Arithmetic Logic Unit: “Performs calculations e.g. x = 2 + 3 and logical

comparisons e.g. IF x > 3 in the CPU.”
4. 1.1.1 1.1 Systems architecture Architecture of the CPU CU Control Unit: “Decodes instructions. Sends signals to control how data moves

around the CPU.”
5. 1.1.1 1.1 Systems architecture Architecture of the CPU Cache “Memory in the processor providing fast access to frequently used instructions

and data.”
6. 1.1.1 1.1 Systems architecture Architecture of the CPU Register “Tiny areas of extremely fast memory located in the CPU normally designed for a

specific purpose, where data or control information is stored temporarily e.g. the
MAR, MDR etc.”

7. 1.1.1 1.1 Systems architecture Architecture of the CPU Von Neumann architecture “Traditional computer architecture that forms the basis of most digital computer
systems. Instructions are fetched, decoded and executed one at a time.”

8. 1.1.1 1.1 Systems architecture Architecture of the CPU MAR Memory Address Register: “Holds the address of data ready for use by the
memory data register, or the address of an instruction passed from the program
counter. Step 2 of the fetch, decode, execute cycle.”

9. 1.1.1 1.1 Systems architecture Architecture of the CPU MDR Memory Data Register: “Holds the data fetched from or to be written to the
memory. Step 3 of the fetch, decode, execute cycle.”

10. 1.1.1 1.1 Systems architecture Architecture of the CPU Program Counter “Holds the address of the next instruction to be executed. Step 1 of the fetch,
decode, execute cycle.”

11. 1.1.1 1.1 Systems architecture Architecture of the CPU Accumulator “Holds the result of calculations.”
12. 1.1.2 1.1 Systems architecture CPU performance Clock speed “Measured in Hertz, the clock speed is the frequency at which the internal clock

generates pulses. The higher the clock rate, the faster the computer may work.
The “clock” is the electronic unit that synchronizes related components by
generating pulses at a constant rate.”

13. 1.1.2 1.1 Systems architecture CPU performance Cache size “A part of the main store between the central processor and the rest of the
memory. It has extremely fast access, so sections of a program and its associated
data are copied there to take advantage of its short fetch cycle. The larger the
size of the cache the more that can be copied and stored here without having to
go back to slower main memory (RAM), this has a significant impact on the speed
of processing.”

14. 1.1.2 1.1 Systems architecture CPU performance Cores “A part of a multi-core processor. A multi-core processor is a single component
with two or more independent actual CPUs, which are the units responsibly for
the fetch-decode-execute cycle.”

15. 1.1.3 1.1 Systems architecture Embedded systems Embedded system “A computer which has been built to solve a very specific program and is not
easily changed. For example the operating system placed inside a washing
machine, microwave or set of traffic lights.”

16. 1.2.1 1.2 Memory and storage Primary storage (Memory) Primary storage “At GCSE level you can think of primary storage comprising of Random Access
Memory (RAM) and Read Only Memory (ROM). It holds data and instructions
which the CPU can much more easily and quickly access than from secondary
storage devices.”

17. 1.2.1 1.2 Memory and storage Primary storage (Memory) RAM Random Access Memory: “Volatile (data lost when power is off) Read and write.
Purpose: temporary store of currently executing instructions and their data. E.g.
applications and the operating system in use.”

18. 1.2.1 1.2 Memory and storage Primary storage (Memory) ROM Read Only Memory: “Non-volatile (data retained when power is off) Read only.
Purpose: stores instructions for starting the computer called the bootstrap.”

19. 1.2.1 1.2 Memory and storage Primary storage (Memory) Virtual memory “Using part of the hard disk as if it were random access memory. Allows more
applications to be open than physical memory could hold.”

20. 1.2.2 1.2 Memory and storage Secondary storage Secondary storage “Permanent storage of instructions and data not in use by the processor. Stores
the operating system, applications and data not in use. Read/write and non-
volatile.”

21. 1.2.2 1.2 Memory and storage Secondary storage Optical storage “CD/R, CD/RW, DVD/R, DVD/RW Use: music, films and archive files. Low capacity.
Slow access speed. High portability. Prone to scratches. Low cost.”

22. 1.2.2 1.2 Memory and storage Secondary storage Magnetic storage “Hard disk drive. Use: operating system and applications. High capacity. Medium
data access speed. Low portability (except for portable drives). Reliable but not
durable. Medium cost.”

23. 1.2.2 1.2 Memory and storage Secondary storage Solid state storage “Memory cards & solid state hard drive (SSD). Use: digital cameras and
smartphones. Medium capacity. High portability. Reliable and durable. No moving
parts. Fast data access speed. High cost.”

24. 1.2.2 1.2 Memory and storage Secondary storage Storage capacity “The amount of data a storage device is able to store. ”
25. 1.2.2 1.2 Memory and storage Secondary storage Storage speed “The read/write access speed of a storage device.”
26. 1.2.2 1.2 Memory and storage Secondary storage Storage portability “How easy it is to transport a given storage medium. E.g. Solid state and optical

storage and designed to be highly portable, whereas more traditional magnetic
storage is designed to stay in place.”

27. 1.2.2 1.2 Memory and storage Secondary storage Storage durability “How resistant to damage and wear a tear a storage device is. Devices with low
durability will wear out easily over time.”

28. 1.2.2 1.2 Memory and storage Secondary storage Storage reliability “A relative measure of how confidant you can be that a given storage device will
correctly allow you to write, read, delete and modify data.”

29. 1.2.2 1.2 Memory and storage Secondary storage Storage cost “The relative price of a storage device e.g. per Megabyte of data”
30. 1.2.3 1.2 Memory and storage Units Bit “The smallest unit of storage in a computer system, represented by either a binary

1 or 0.”
31. 1.2.3 1.2 Memory and storage Units Nibble “Half a byte / 4 bits.”
32. 1.2.3 1.2 Memory and storage Units Byte “A collection of eight bits.”
33. 1.2.3 1.2 Memory and storage Units Kilobyte “1 Kilobyte (KB) is 1024 Bytes. For the purpose of calculations in an exam you can

assume 1000.”
34. 1.2.3 1.2 Memory and storage Units Megabyte “1 Megabyte (MB) is 1024 Kilobytes (KB). For the purpose of calculations in an

exam you can assume 1000.”
35. 1.2.3 1.2 Memory and storage Units Gigabyte “1 Gigabyte (GB) is 1024 Megabytes (MB). For the purpose of calculations in an

exam you can assume 1000.”
36. 1.2.3 1.2 Memory and storage Units Terabyte “1 Terabyte (TB) is 1024 Gigabytes (GB). For the purpose of calculations in an

exam you can assume 1000.”
37. 1.2.3 1.2 Memory and storage Units Petabyte “1 Petabyte (PB) is 1024 Terabytes (TB). For the purpose of calculations in an

exam you can assume 1000.”
38. 1.2.4 1.2 Memory and storage Data storage (Numbers) Denary numbers “A numerical system of notation which uses 10 as its base. The 10 Decimal base

digits are 0-9.”
39. 1.2.4 1.2 Memory and storage Data storage (Numbers) Binary numbers “Binary describes a numbering scheme in which there are only two possible values

for each digit: 0 and 1. The term in computing refers to any digital encoding
system in which there are exactly two possible states. E.g. in memory, storage,
processing and communications, the 0 and 1 values are sometimes called “low”
and “high”, respectively.”

40. 1.2.4 1.2 Memory and storage Data storage (Numbers) Binary arithmetic “The process of adding together two of more positive 8-bit binary numbers (0-
255).”

41. 1.2.4 1.2 Memory and storage Data storage (Numbers) Overflow “The generation of a number that is too large to be represented in the device
meant to store it.”

42. 1.2.4 1.2 Memory and storage Data storage (Numbers) Hexadecimal “A numerical system of notation which uses 16 rather than 10 as its base. The 16
Hex base digits are 0-9 and the letters A-F.”

43. 1.2.4 1.2 Memory and storage Data storage (Numbers) Binary shifts “Allows you to easily multiple and divide base-2 binary numbers. A left shift
multiplies by 2 and a right shift divides by 2.

44. 1.2.4 1.2 Memory and storage Data storage (Characters) Character set “The set of symbols that may be represented in a computer at a particular time.
These symbols, called characters, can be letters, digits, spaces or punctuations
marks, the set includes control characters.”

45. 1.2.4 1.2 Memory and storage Data storage (Characters) ASCII “America Standard Code for Information Interchange: “A character set devised for
early telecommunication systems but proved to be ideal for computer systems.
ASCII codes use 7-bits giving 32 control codes and 96 displayable characters (the
8th bit is often used for error checking).”

46. 1.2.4 1.2 Memory and storage Data storage (Characters) Unicode “Standard character set that replaces the need for all the different character sets.
It incorporates characters from almost all the world’s languages. It is a 16-bit
extension of ASCII.”

47. 1.2.4 1.2 Memory and storage Data storage (Images) Pixels “A pixel is the smallest unit of a digital image or graphic that can be displayed and
represented on a digital display device. A pixel is represented by a dot or square
on a computer monitor display screen.”

48. 1.2.4 1.2 Memory and storage Data storage (Images) Metadata “A set of data that describes and gives information about other data.”
49. 1.2.4 1.2 Memory and storage Data storage (Images) Colour depth “Also known as bit depth, is either the number of bits used to indicate the colour

of a single pixel, in a bitmapped image or video frame buffer, or the number of
bits used for each colour component of a single pixel.”

50. 1.2.4 1.2 Memory and storage Data storage (Images) Resolution “The number of pixels (individual points of colour) contained on a display monitor,
expressed in terms of the number of pixels on the horizontal axis and the number
on the vertical axis.”

51. 1.2.4 1.2 Memory and storage Data storage (Images) Image quality “The overall detail of an image, this is affected by the colour depth and
resolution.”

52. 1.2.4 1.2 Memory and storage Data storage (Images) Image file size “The file size of an image is increased when either its resolution (width & height in
pixels) or its colour depth (number of bits needed to store a single pixel)
increases.”
File size of an image = colour depth x image height (px) x image width (px)

53. 1.2.4 1.2 Memory and storage Data storage (Sound) Sample rate “The number of samples taken per second, measured in Hertz (Hz).”
54. 1.2.4 1.2 Memory and storage Data storage (Sound) Sample duration “How many seconds of audio the sound file contains.”
55. 1.2.4 1.2 Memory and storage Data storage (Sound) Sample bit depth “The number of bits available to store each sample e.g. 16-bit”
56. 1.2.4 1.2 Memory and storage Data storage (Sound) Playback quality “The finished quality of the digital sound file. This is effected by the sample rate

and bit-depth. The higher the number the better the quality. The higher the
number the larger the file size. CD quality is 44,100 samples per second.”

57. 1.2.4 1.2 Memory and storage Data storage (Sound) Sound file size “The overall size of a sound file is found by the following formula:
Sample rate x duration (s) x bit depth”

58. 1.2.5 1.2 Memory and storage Compression Compression “The process of reducing the size of a file in terms of its storage size.”
59. 1.2.5 1.2 Memory and storage Compression Lossy compression “A compression scheme where their generally involves a loss of resolution in parts

of the image where experiences shows that it will be least noticed.”
60. 1.2.5 1.2 Memory and storage Compression Lossless compression “A compression scheme that allows the original images to be recreated.”
61. 1.3.1 1.3 Computer networks,

connections and protocols
Networks and topologies LAN Local Area Network: “Small geographic area. All the hardware for the LAN is

owned by the organisation using it. Wired with UTP cable, fibre optic cable or
wireless using routers and Wi-Fi access points.”

62. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies WAN Wide Area Network: “Small geographic area. All the hardware for the LAN is
owned by the organisation using it. Wired with UTP cable, fibre optic cable or
wireless using routers and Wi-Fi access points.”

63. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Client-server network “A client makes requests to the server for data and connections. A server controls
access and security to one shared file store. A server manages access to the
internet, shared printers and email services. A server runs a backup of data.”

64. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Peer-to-peer network “All computers are equal. Computers serve their own files to each other. Each
computer is responsible for its own security and backup. Computers usually have
their own printer.”

65. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Wireless access point “A networking hardware device that allows a Wi-Fi device to connect to a wired
network.”

66. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Router “A router sends data between networks. It is needed to connect a local area
network to a wide area network. It uses the IP address on a device to route traffic
to other routers.”

67. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Switch “A switch sends data between computers on a local area network. It uses the NIC
address on a device to route traffic.”

68. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies NIC Network Interface Card/Controller: “A computer hardware component that
connects a computer to a computer network.”

69. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Transmission media “The physical media over which data is transmitted, e.g. twisted copper cable,
fibre optic etc. ”

70. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies The Internet “The Internet is a worldwide collection of interconnected computer networks. It
is an example of a WAN, albeit the very largest one which exists!”

71. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies DNS Domain Name System: “The Internet’s equivalent of a phone book. They
maintain a directory of domain names and translate them to Internet Protocol (IP)
addresses. This is necessary because, although domain names are easy for people
to remember, computers or machines access websites based on IP addresses.”

72. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Hosting “Websites stored on dedicated servers. Reasons include: Websites need to be
available 24/7. Accessed by thousands of users at a time. Strong protection from
hackers. They need an IP address that doesn’t change.”

73. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies The Cloud “Remote servers that store data that can be accessed over the internet.
Advantages: Access anytime, anywhere from any device. Automatic backup.
Collaborate on files easily.”

74. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Web server “A program that uses HTTP (Hypertext Transfer Protocol) to serve the files that
form Web pages to users, in response to their requests, which are forwarded by
their computers' HTTP clients. Dedicated computers and appliances may be
referred to as Web servers as well.”

75. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Client “A client can be thought of as computing device which requests or is using the
services from some remote / connected server.”

76. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Network topology “The physical or logical arrangement of connected devices on a network e.g.
Computers, switches, routers, printers, servers etc.”

77. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Star topology “Computers connected to a central switch. If one computer fails no others are
affected. If the switch fails all connections are affected.”

78. 1.3.1 1.3 Computer networks,
connections and protocols

Networks and topologies Mesh topology “Switches (LAN) or routers (WAN) connected so there is more than one route to
the destination. e.g. The Internet More resilient to faults but more cable needed.”

79. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Wired connection “Any physical connection made between two or more devices e.g. Copper wire,
Ethernet cables, fibre optics etc.”

80. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Ethernet “A standard for networking local area networks using protocols. Frames are used
to transmit data. A frame contains the source and destination address, the data
and error checking bits. Uses twisted pair and fibre optic cables. A switch connects
computers together.”

81. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Wireless connection “Any connection made between two or more devices which does not involve the
need for a physical connection e.g. Wi-Fi, 4G, Bluetooth etc.”

82. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Wi-Fi “Wireless connection to a network. Requires a wireless access point or router.
Data is sent on a specific frequency. Each frequency is called a channel.”

83. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Bluetooth “A method of exchanging data wirelessly over short distances, (much shorter than
Wi-Fi). Examples of typical Bluetooth use could be, headphones, car mobiles etc.”

84. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Encryption “Encoding readable data called plaintext into unreadable data called ciphertext.
Only the intended recipient can decode the data using a key. Protects
communications from hackers.”

85. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

IP address Internet Protocol Address: “A unique string of numbers separated by full stops
that identifies each computer using the Internet Protocol to communicate over a
network.”

86. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

MAC address Media Access Control Address: “A unique identifier assigned to network
interfaces for communications at the data link layer of a network segment. MAC
addresses are used as a network address for most network technologies, including
Ethernet and Wi-Fi.”

87. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Standards “The field of Computer Science is full of standards. They provide us with various
rules for different areas of computing. Standards allow hardware and software to
interact across the different manufacturers / producers.”

88. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Protocol “A set of rules that allow two devices to communicate.”

89. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

TCP/IP Transmission Control Protocol / Internet Protocol: “TCP provides an error free
transmission between two routers. IP routes packets across a wide area network.”

90. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

HTTP Hypertext Transfer Protocol: “A client-server method of requesting and delivering
HTML web pages. Used when the information on a web page is not sensitive or
personal.”

91. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

HTTPS Hypertext Transfer Protocol Secure: “Encryption and authentication for
requesting and delivering HTML web pages. Used when sensitive form or database
data needs to be transferred. e.g. passwords and bank account details.”

92. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

FTP File Transfer Protocol: “Used for sending files between computers, usually on a
wide area network. Typically used for uploading web pages and associated files to
a web server for hosting.”

93. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

POP Post Office Protocol: “Used by email clients to retrieve email from an email
server.”

94. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

IMAP Internet Message Access Protocol: “Used by mail clients to manage remote
mailboxes and retrieve email from a mail server.”

95. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

SMTP Simple Mail Transfer Protocol: “Sends email to an email server.”

96. 1.3.2 1.3 Computer networks,
connections and protocols

Wired and wireless
networks, protocols and
layers

Protocol layering “The concept of a protocol not simply being a set of rules but those rules being
built up into very specific layers and those rule layers behind built on top of each
other in a deliberate order creating a layered protocol stack. This results in the
rules of a protocol being executed in a specific sequence as you move through the
protocol stack.”

97. 1.4.1 1.4 Network security Threats to computer
systems and networks

Malware “Software written to cause loss of data, encryption of data, fraud and identity
theft: virus, worm, trojan, ransomware and spyware.”

98. 1.4.1 1.4 Network security Threats to computer
systems and networks

Social engineering “Most vulnerabilities are caused by humans. Not locking computers. Using
insecure passwords. Not following/poor company network policies. Not installing
protection software. Not being vigilant with email/files received. Not encrypting
sensitive data.”

99. 1.4.1 1.4 Network security Threats to computer
systems and networks

Phishing “Sending emails purporting to be from reputable companies to induce people to
reveal personal information.”

100. 1.4.1 1.4 Network security Threats to computer
systems and networks

Brute-force attack “A trial and error method of attempting passwords. Automated software is used
to generate a large number of guesses.”

101. 1.4.1 1.4 Network security Threats to computer
systems and networks

Denial of service attack “Flooding a server with so much traffic it is unable to process legitimate requests.”

102. 1.4.1 1.4 Network security Threats to computer
systems and networks

Data interception and theft “Stealing computer-based information.”

103. 1.4.1 1.4 Network security Threats to computer
systems and networks

SQL injection “A hacking technique used to view or change data in a database by inserting SQL
code instead of data into a text box on a form.”

104. 1.4.2 1.4 Network security Identifying and preventing
vulnerabilities

Penetration testing “Testing designed to check the security and vulnerabilities of a system.”

105. 1.4.2 1.4 Network security Identifying and preventing
vulnerabilities

Anti-malware software “Antimalware software protects against infections caused by many types of
malware, including viruses, worms, Trojan horses, rootkits, spyware, key loggers,
ransomware and adware.”

106. 1.4.2 1.4 Network security Identifying and preventing
vulnerabilities

Firewall “A computer application used in a network to prevent external users gaining
unauthorised access to a computer system.”

107. 1.4.2 1.4 Network security Identifying and preventing
vulnerabilities

User access level “The amount of access a given user is allowed to a computer. On a network most
users will have restricted access. Whereas a systems administer or network
technician would be allowed much greater access with fewer restrictions.”

108. 1.4.2 1.4 Network security Identifying and preventing
vulnerabilities

Password “A secret word or phrase that must be used to gain access to a computer /
program / interface / system.”

109. 1.4.2 1.4 Network security Identifying and preventing
vulnerabilities

Physical security “Any form of real world physical security to help protect data and systems e.g.
Alarms, locks, security patrols etc.”

110. 1.5.1 1.5 Systems software Operating systems Systems software “A generic umbrella term for all the software which typically ships with a new
computer in order to make it work. It covers Operating Systems, Utility Software,
Device Drivers etc.”

111. 1.5.1 1.5 Systems software Operating systems Operating system “A sub-category of systems software. An operating system allows the user to
install applications which then can interact with the hardware underneath via the
operating system software. Most common operating systems are Windows,
Linux, Unix, MacOS, iOS.”

112. 1.5.1 1.5 Systems software Operating systems User interface “The means by which the user and a computer system interact, in particular the
use of input devices and software.”

113. 1.5.1 1.5 Systems software Operating systems Memory management “The process of the operating system deciding what should be in memory at any
given time. Responsible for loading data and programs into and out of memory
when required.”

114. 1.5.1 1.5 Systems software Operating systems Multitasking “Running more than one application at a time by giving each one a slice of
processor time.”

115. 1.5.1 1.5 Systems software Operating systems Peripheral management “The process of your operating system dealing with requests / input / output to
and from any connected peripheral devices such as a mouse, keyboard, webcam,
speaker, scanner, printer etc.”

116. 1.5.1 1.5 Systems software Operating systems Driver “Translates commands from the operating system into hardware specific
commands that a device understands. e.g. A printer driver tells the printer how to
print a document from the operating system.”

117. 1.5.1 1.5 Systems software Operating systems User management “Operating system provides for: Allowing different people to log into the same
computer with a username and password. Remembering personal settings.
Managing access rights to files.”

118. 1.5.1 1.5 Systems software Operating systems File management “Operating system provides: Access permissions for files (read and write).
Opening files in associated programs. Moving, deleting and renaming files.
Presenting a folder structure to the user.”

119. 1.5.2 1.5 Systems software Utility software Utility software “A systems program that performs some specific task in the operation of the
computer, for example file backup, virus checking or a compression program.”

120. 1.5.2 1.5 Systems software Utility software Encryption software “Turns plaintext data into unreadable ciphertext data using a key. Protects data
from being read by hackers.”

121. 1.5.2 1.5 Systems software Utility software Defragmentation software “Different sized files saved on disk are deleted over time creating gaps on the disk.
New files fill up the gaps, but may need more space than the gap provides
resulting in fragments of the file being spread across the disk. Defragmentation
rearranges parts of files back to contiguous space. Makes access quicker.”

122. 1.5.2 1.5 Systems software Utility software Data compression software “Reduces the size of a file. Takes up less disk space. Quicker to download over the
internet. Compressed files must be extracted before they can be read.”

123. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Ethical issues “The ethical and moral issues which have come about in modern society due to
the increase use of computer science and its related technologies. e.g.
Losing/changing jobs. Efficiency: robots work 24/7.
Access to IT is not equal (digital divide). Invasion of privacy. Responsibility for
content on the internet. ”

124. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Legal issues “The legal issues which have come about in modern society due to the increase
use of computer science and its related technologies. e.g. Copyright and
ownership of digital content, different laws in different countries (crime may be
committed in a certain country, but the people committing the crime could be
physically located in another), hacking, piracy. ”

125. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Cultural issues “The cultural moral issues which have come about in modern society due to the
increase use of computer science and its related technologies. e.g. Censorship to
prevent political unrest and preserve culture. Geography & economy of a country
affects access to networks and power. Increased mobile technology impacts on
how people communicate: cyberbullying. ”

126. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Environmental issues “The environmental issues which have come about in modern society due to the
increase use of computer science and its related technologies. e.g. Manufacturing
computers uses fossil fuels. Limited number of natural resources. Data centres use

2% of global energy. Computers contain hazardous materials, often shipped to
other countries for disposal. ”

127. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Privacy issues “The privacy issues which have come about in modern society due to the increase
use of computer science and its related technologies. e.g. Increase in always on,
voice activated devices in the home. Rise in CCTV. Rise in social networking and
GPS tracking.”

128. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

The Data Protection Act
2018

“Legislation which protects individuals from unreasonable use of their personal
data. Updated in 2018 to encompass all the new requirements of the General
Data Protection Regulation.”

129. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Computer Misuse Act 1990 “Legislation which defines electronic vandalism, unauthorised access to computer
systems and theft of information.”

130. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Copyright Design and
Patents Act 1998

“Legislation which gives creators of literacy, dramatic, musical and artistic works
the right to control the ways in which their material may be used.”

131. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Software licences “A set of binding legal terms which often come with a commercial software
application, they will dictate how you can use the software e.g. personal use only,
company use, installed on just a single computer etc.

132. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Open source “Users can modify and distribute the software. Can be installed on any number of
computers. Support provided by the community. Users have access to the source
code. May not be fully tested.”

133. 1.6.1 1.6 Ethical, legal, cultural and
environmental concerns

Ethical, legal, cultural and
environmental impact

Proprietary “Users cannot modify the software. Copyright protected. Usually paid for.
Licensed per user or per computer. Support provided by developers. Users do not
have access to the source code. Fully tested and supported by developers.”

134. 2.1.1 2.1 Algorithms Computational thinking Computational thinking “The thought processes involved in formulating a problem and expressing its
solution(s) in such a way that a computer—human or machine—can effectively
carry out.”

135. 2.1.1 2.1 Algorithms Computational thinking Abstraction “The process of separating ideas from specific instances of those ideas at work.
Computational structures are defined by their meanings, while hiding away the
details of how they work. Abstraction tries to factor out details from a common
pattern so that programmers can work close to the level of human thoughts,
leaving out details which matter in practice, but are immaterial to the problem
being solved.”

136. 2.1.1 2.1 Algorithms Computational thinking Decomposition “The process by which a complex problem or system is broken down into parts
that are easier to conceive, understand, program and maintain.”

137. 2.1.1 2.1 Algorithms Computational thinking Algorithmic thinking “A way of getting to a solution by identifying the steps needed.”
138. 2.1.2 2.1 Algorithms Designing, creating and

refining algorithms
Problem inputs “Any information or data which goes into a system.”

139. 2.1.2 2.1 Algorithms Designing, creating and
refining algorithms

Problem processes “Anything which happens to data during a system running e.g. performing
calculations.”

140. 2.1.2 2.1 Algorithms Designing, creating and
refining algorithms

Problem outputs “Any information of data which leaves a system.”

141. 2.1.2 2.1 Algorithms Designing, creating and
refining algorithms

Structure diagram “A diagram which looks like an upside down tree, with one node at the top (root)
and many below. It is used when designing solutions to problems in order to help
break a large problem down into a number of small parts.”

142. 2.1.2 2.1 Algorithms Designing, creating and
refining algorithms

Psuedocode “A language independent description of the steps of an algorithm. Intended for
humans to express and design algorithms before coding.”

143. 2.1.2 2.1 Algorithms Designing, creating and
refining algorithms

Flowchart “A method of designing algorithms before coding using symbols.”

144. 2.1.2 2.1 Algorithms Designing, creating and
refining algorithms

Trace table “A technique used to test algorithms, in order to make sure that no logical errors
occur while the algorithm is being processed. The table usually has one column for
each variable. Each row of the table shows how the various values held in
variables change as the algorithm is running.”

145. 2.1.3 2.1 Algorithms Searching and sorting
algorithms

Searching algorithms “An algorithm which attempts to find a given value in a data set.”

146. 2.1.3 2.1 Algorithms Searching and sorting
algorithms

Binary search “A particularly efficient search method. It only works if records in the file are in
sequence. A binary search involvers accessing the middle record in the file and
determining if the target record has been found or, if not, if it is before or after in
the sequence. This process is repeated on the part of the file where the target
record is expected, until it is found.”

147. 2.1.3 2.1 Algorithms Searching and sorting
algorithms

Linear search “Involves examining each entry in turn in the file until the time is found or the end
of the file is reached. Unless the file is in some useful order a serial search has to
be used.”

148. 2.1.3 2.1 Algorithms Searching and sorting
algorithms

Sorting algorithm “An algorithm which attempts to sort an unordered set of values.”

149. 2.1.3 2.1 Algorithms Searching and sorting
algorithms

Bubble sort “A simple algorithm popular with inexperienced programmers. It is inefficient
when sorting large amounts of data as the time taken is related to the square of
the number of items. If 10 items take 1ms then 100 times will take 100ms (this is
10 times the number of items and so the time will be 102 or 100 times longer).”

150. 2.1.3 2.1 Algorithms Searching and sorting
algorithms

Merge sort “A type of divide and conquer algorithm that was incited by John von Neumann.
First the list is divided into the smallest unit (1 element), then each element is
compared with the adjacent list to sort and merge the two adjacent lists. Finally
all elements are sorted and merged.”

151. 2.1.3 2.1 Algorithms Searching and sorting
algorithms

Insertion sort “A simple sorting algorithm that builds the final sorted array (or list) one item at
time. It is much less efficient on large lists than more advanced algorithms such as
quicksort, heapsort, or merge sort.”

152. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Variable “A value that can change, depending on conditions or on information passed to
the program.”

153. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Constant “A value that cannot be altered by the program during normal execution, i.e., the
value is constant.”

154. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Operator “A generic term in Computer Science. An operator tells how you to manipulate or
interpret values. Categories of operators you will need to know are: Arithmetic,
Boolean, Comparison.”

155. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Assignment “Giving a variable or constant a value. e.g. counter = 0”

156. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Programming construct “Lines / block of code which perform a distinct function. The three basic
programming constructs are: Sequence, Selection, Iteration.”

157. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Sequence “One of the 3 basic programming constructs. Instructions happening one after the
other in order is sequence.”

158. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Selection “One of the 3 basic programming constructs. Instructions which can evaluate a
Boolean expression and then branch the code to one or more alternatives paths is
branching / selection.”

159. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Count controlled iteration “An iteration which loops a fixed number of times. The count is kept in a variable
called an index or counter. When the index reaches a certain value (the loop
bound) the loop will end. Count-controlled repetition is often called definite
repetition because the number of repetitions is known before the loop begins
executing.”

160. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Condition controlled
iteration

“A way for computer programs to repeat one or more various steps depending on
conditions set either by the programmer initially or real-time by the actual
program.”

161. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator “+, -, /, *, ^. Used in mathematical expressions e.g. num1 + num2 = sum”

162. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Boolean operator: AND “A logical operator used within a program. AND works by only returning TRUE if
both values being compared are TRUE.”

163. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Boolean operator: OR “A logical operator used within a program. OR works by returning TRUE as long as
either value being compared is TRUE.”

164. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Boolean operator: NOT “A logical operator used within a program. NOT works by returning FALSE if the
input is TRUE, and returning TRUE if the input is FALSE.”

165. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Comparison operator: == “One of the standard comparison operators you can use in virtually all
programming languages to carry out computing-related mathematics:

== is the standard symbol used to represent ‘equal to’ ”
166. 2.2.1 2.2 Programming

fundamentals
Programming
fundamentals

Comparison operator: != “One of the standard comparison operators you can use in virtually all
programming languages to carry out computing-related mathematics:
!= is the standard symbol used to represent ‘not equal to’ ”

167. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Comparison operator: < “One of the standard comparison operators you can use in virtually all
programming languages to carry out computing-related mathematics:
< is the standard symbol used to represent ‘less than’ ”

168. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Comparison operator: <= “One of the standard comparison operators you can use in virtually all
programming languages to carry out computing-related mathematics:
<= is the standard symbol used to represent ‘less than or equal to’ ”

169. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Comparison operator: > “One of the standard comparison operators you can use in virtually all
programming languages to carry out computing-related mathematics:
> is the standard symbol used to represent ‘greater than’ ”

170. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Comparison operator: >= “One of the standard comparison operators you can use in virtually all
programming languages to carry out computing-related mathematics:
>= is the standard symbol used to represent ‘greater than or equal to’ ”

171. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator: + “One of the standard arithmetic operators you can use in virtually all
programming languages to carry out computing-related mathematics:
+ is the standard symbol used for addition.”

172. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator: - “One of the standard arithmetic operators you can use in virtually all
programming languages to carry out computing-related mathematics:
- is the standard symbol used for subtraction.”

173. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator: * “One of the standard arithmetic operators you can use in virtually all
programming languages to carry out computing-related mathematics:
* is the standard symbol used for multiplication.”

174. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator: / “One of the standard arithmetic operators you can use in virtually all
programming languages to carry out computing-related mathematics:
/ is the standard symbol used for real division.”

175. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator: MOD “One of the standard arithmetic operators you can use in virtually all
programming to carry out integer division:
MOD gives you remainder left over e.g. 10 MOD 3 would give you 1.”

176. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator: DIV “One of the standard arithmetic operators you can use in virtually all
programming to carry out integer division:
DIV gives you the number of times a number fits into another number e.g. 10
MOD 3 would give you 3.”

177. 2.2.1 2.2 Programming
fundamentals

Programming
fundamentals

Arithmetic operator: ^ “One of the standard arithmetic operators you can use in virtually all
programming languages to carry out computing-related mathematics:

^ is the standard symbol used for exponent.”
178. 2.2.2 2.2 Programming

fundamentals
Data types Data type “The basic data types provided by a programming language as building blocks.

Most languages allow more complicated composite types to be recursively
construction starting from basic types. E.g. char, integer, float, Boolean. As an
extension a ‘string’ data type is constructed behind the scenes of many char data
types.”

179. 2.2.2 2.2 Programming
fundamentals

Data types Integer “A data type used to store positive and negative whole numbers.”

180. 2.2.2 2.2 Programming
fundamentals

Data types Real “A data type used to store an approximation of a real number in a way that can
support a trade-off between range and precision. A number is, in general,
represented approximately to a fixed number of significant digits and scaled using
an exponent.”

181. 2.2.2 2.2 Programming
fundamentals

Data types Boolean “Used to store the logical conditions TRUE / FALSE. Often translated to On/Off,
Yes/No etc.”

182. 2.2.2 2.2 Programming
fundamentals

Data types Character “A single alphanumeric character or symbol.”

183. 2.2.2 2.2 Programming
fundamentals

Data types String “A sequence of alphanumeric characters and or symbols. e.g. a word or sentence.”

184. 2.2.2 2.2 Programming
fundamentals

Data types Casting “Converting a variable from one data type to another. e.g. variable entered as a
string, but needs to be an integer for calculation. age = INPUT(“Enter your age: “)
age = INT(age)”

185. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

String manipulation “Commands and techniques which allow you to alter and extract information from
textual strings e.g. .length .substring(x, i) .left(i) .right(i) .upper .lower ASC(…)
CHR(…)”

186. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

File handling: Open “File handling is the process of dealing with input to and from files. Files first have
to be opened, this creates a handle to the file and allows reading and writing.”

187. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

File handling: Read “File handling is the process of dealing with input to and from files. Once a file has
been opened it is possible to use commands to read its contents and return them
to your program.”

188. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

File handling: Write “File handling is the process of dealing with input to and from files. Once a file has
be opened it is possible to use commands to write data to file from your
program.”

189. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

File handling: Close “File handling is the process of dealing with input to and from files. Once you are
done reading / writing it is important to close a file, this releases the file handle
and breaks the connection between it and your program.”

190. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

Record “A data structure which consists of a collection of elements, typically in fixed
number and sequence and typically indexed by names. The elements of records
may also be called fields.”

“The record type is a data type that describes such values and variables. Most
modern computer languages allow the programmer to define new record types.
The definition includes specifying the data type of each field and an identifier by
which it can be accessed.”

191. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

SQL “The language and syntax used to write and run database queries”

192. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

SQL command: SELECT “A key word in the SQL programming language used for the querying (retrieval) of
data.” e.g.

SELECT Name, Age, Class
FROM Students_table
WHERE Gender = ‘Male’

193. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

SQL command: FROM “A key word in the SQL programming language used to signify which table(s) we
are using.” e.g.

SELECT Name, Age, Class
FROM Students_table
WHERE Gender = ‘Male’

194. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

SQL command: WHERE “A key word in the SQL programming language used to filter the results of your
query.” e.g.

SELECT Name, Age, Class
FROM Students_table
WHERE Gender = ‘Male’

195. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

Array “A set of data items of the same type grouped together using a single identifier.
Each of the data items is addressed by the variable name and a subscript.”

196. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

Sub programs “A block of code given a unique identifiable name within a program. Supports
code reuse and good programming technique.”

197. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

Procedure “A block of code given a unique identifiable name within a program. A procedure
can take either zero or more parameters when it is called. The procedure should
be designed and written to perform one task or action which is clearly indicated
by its name.”

198. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

Function “A block of code given a unique identifiable name within a program. A function
can take either zero or more parameters when it is called and should return a
value. The function should be designed and written to perform one task or action
which is clearly indicated by its name.”

199. 2.2.3 2.2 Programming
fundamentals

Additional programming
techniques

Random number generation “Most programming languages have built in functions or libraries that allow you to
easily generate random numbers. Creating truly random numbers is actually
something quite difficult for a computer, and these algorithms are quite complex.”

200. 2.3.1 2.3 Producing robust programs Defensive design Defensive design “Defensive design is the practice of planning for contingencies in the design stage
of a project or undertaking.”

201. 2.3.1 2.3 Producing robust programs Defensive design Anticipating misuse “The ability of a programmer to consider how the end user might accidently (or on
purpose) break the program and then to write additional code to handle these
situations.”

202. 2.3.1 2.3 Producing robust programs Defensive design Authentication “Verifying a user identity before they can use a program with username and
password. Strong passwords over a certain length with symbols and mixed case
are advised.”

203. 2.3.1 2.3 Producing robust programs Defensive design Input validation “Ensuring data input by the user meets specific criteria before processing. Range
check. E.g. between 1 and 31. Type check. E.g. number not symbol. Presence
check. E.g. data has been input. Format check. E.g. postcode is LLN(N) NLL. ”

204. 2.3.1 2.3 Producing robust programs Defensive design Maintainability “A selection of techniques and methods that make code easy to debug, update
and maintain.”

205. 2.3.1 2.3 Producing robust programs Defensive design Naming conventions “Many programmers / organisations use certain naming conventions for their
variables / contents / procedure names etc.

Camel case is a popular one used in industry where the first word of an identifier
uses all lower case, with all subsequent words starting with a capital letter:

e.g. studentsFirstName”

206. 2.3.1 2.3 Producing robust programs Defensive design Indentation “Indenting makes it easy to see where structures begin and end. Conditions and
iterations should be indented. Code inside procedures and functions should be
indented.”

207. 2.3.1 2.3 Producing robust programs Defensive design Commenting “Used by a programmer to explains sections of code. Ignored by the compiler.”
208. 2.3.2 2.3 Producing robust programs Testing Testing “This involves testing the program under various conditions to make sure it is

going to work. You need to think about what devices it could be used on and what
might cause the program to crash.”

209. 2.3.2 2.3 Producing robust programs Testing Iterative testing “Each module of a program is tested as it is developed.”
210. 2.3.2 2.3 Producing robust programs Testing Final/terminal testing “Testing that all the modules of a program work together as expected. Checking

the program meets the expectations of the user with real data.”

211. 2.3.2 2.3 Producing robust programs Testing Syntax error “Rules of the language have been broken. The program will not run. Variables not
being declared before use. Incompatibility of variable types. E.g. sum = A Using
assignments incorrectly. E.g. 2 + 2 = x Keywords misspelt. E.g. PRNT(“Hello”)”

212. 2.3.2 2.3 Producing robust programs Testing Logical error “The program runs but does not give the expected output. Division by zero.
Infinite loop. Memory full. File not found.”

213. 2.3.2 2.3 Producing robust programs Testing Test data “Values used to test a program, includes normal test data, boundary test data and
erroneous test data.”

214. 2.3.2 2.3 Producing robust programs Testing Test data: Normal “Data supplied to a program which you would expect.

e.g. A program has been written to average out test scores from students, the
scores allowed are from 0-100. Normal test data could be: 32, 40, 82 etc.”

215. 2.3.2 2.3 Producing robust programs Testing Test data: Boundary “Data supplied to a program which is designed to test the boundaries of a
problem.

e.g. A program has been written to average out test scores from students, the
scores allowed are from 0-100. Boundary test data could be: -1,0,1 or
99,100,101”

216. 2.3.2 2.3 Producing robust programs Testing Test data: Invalid “Data of the correct type but outside accepted validation limits.

e.g. a program asks for the user to input a whole number from 0-100 then
examples of invalid data could be -5, 150 etc.”

217. 2.3.2 2.3 Producing robust programs Testing Test data: Erroneous “Data of the incorrect type which should be rejected by a computer system.

e.g. a program asks for the user to input a whole number from 0-100 then
examples of erroneous data could be the string ‘hello’ or the real 3.725 etc.”

218. 2.4.1 2.4 Boolean logic Boolean logic Logic diagram “A method of expression Boolean Logic in a diagrammatic form using a set of
standard symbols representing the various Logic Gates such as AND NOT OR
NAND etc.”

219. 2.4.1 2.4 Boolean logic Boolean logic Logic gate “An individual symbol used in a logic diagram which represents a single gate e.g.
AND, OR, NOT.”

220. 2.4.1 2.4 Boolean logic Boolean logic Logic gate: AND “A logic gate which accepts two inputs and produces one output.
Both inputs must be TRUE (1) for the output to the TRUE (1),
otherwise the output is FALSE (0).”

221. 2.4.1 2.4 Boolean logic Boolean logic Logic gate: OR “A logic gate which accepts two inputs and produces one output.
At least one input must be TRUE (1) for the output to the TRUE
(1), otherwise the output is FALSE (0).”

222. 2.4.1 2.4 Boolean logic Boolean logic Logic gate: NOT “A logic gate which accepts one input and produces one output.
If the input is TRUE (1) then the output will be FALSE (0). If the
input is FALSE (0) then the output will be TRUE (1).”

223. 2.4.1 2.4 Boolean logic Boolean logic Truth table “A notation used in Boolean algebra for defining the output of a logic gate or logic
circuit for all possible combinations of inputs.”

224. 2.5.1 2.5 Programming languages
and IDEs

Languages High-level language “A language designed to help a programmer express a computer program in a way
that reflects the problem that is being solved, rather than the details of how the
computer will produce the solution. One-to-many language.”

225. 2.5.1 2.5 Programming languages
and IDEs

Languages Low-level language “A language which is close to machine code. Related closely to the design of the
machine. A one-to-one language.”

226. 2.5.1 2.5 Programming languages
and IDEs

Languages Translator “A program that translates a program written in assembly language into machine
code.”

227. 2.5.1 2.5 Programming languages
and IDEs

Languages Compiler “A program that translates a high-level language program, source code, into a
computer’s machine code.”

228. 2.5.1 2.5 Programming languages
and IDEs

Languages Interpreter “Translates and executes a program one statement at a time.”

229. 2.5.2 2.5 Programming languages
and IDEs

The Integrated
Development Environment

IDE Integrated Develop Environment: “A software application that provides
comprehensive facilities to computer programmers for software development. An
IDE normally consists of a source code editor, build automation tools and a
debugger.”

230. 2.5.2 2.5 Programming languages
and IDEs

The Integrated
Development Environment

IDE: Error diagnostics “These are tools provided by IDE’s which give detailed feedback on errors in your
code. ”

231. 2.5.2 2.5 Programming languages
and IDEs

The Integrated
Development Environment

IDE: Run-time environment “A configuration of hardware and software. It includes the CPU type, operating
system and any runtime engines or system software required by a particular
category of applications.”

