Crucial Knowledge – Stage 1 - Number

BIDMAS The order you do calculations in: B rackets I ndices D ivision	Place Value • The 'column values' of numbers Thousands Hundreds Tens Units Decimal 1/10 1/100 1/100									
M ultiplication A ddition S ubtraction	<u>4 Op</u> • Addition (or 3 • Subtraction (• Multiplication • Division ÷	<u>4 Operators</u> Addition (or Sum) + Subtraction (or Difference) – Multiplication (or Product) x Division ÷		• Addir <u>NUN</u> • Mult +		Negative Numbersng or subtracting – USE AIBER LINEiplying or dividing use the rules $x + = +$ $+ \div + = +$				
 Fractions Decimals and Percentages Different ways of saying part of a whole number You can change from one to the other 					- > - >	x (+ = - (- = +	+ - - ÷	+ = -	_	_

•

•

Rounding

Decimal places (column after decimal point)

Significant Figures (highest value column)

Prime Numbers

- Have exactly two factors
- No other whole numbers, except **1** and **itself** divide into them

Crucial Knowledge – Stage 1 - Number

Always a number

between 1 and 10

Highest Common Factor (HCF) Lowest Common Multiple (LCM)

- Write down all the factors from the numbers and find the biggest value on both lists – This is the Highest Common Factor
- Write down all the multiples of the two numbers and find the smallest on both lists – This is the Lowest Common Multiple

Standard Form

- A way of writing very **BIG** or very **SMALL** numbers
- Think **BIG** numbers distance between planets and **SMALL** numbers sizes of atoms.
- BIG numbers have POSITIVE powers and SMALL number have NEGATIVE powers.
 Always a multiply
 Always the number 10

Positive for very large numbers Negative for very small numbers

Percentages

- An amount out of 100
- To Calculate a percentage of an amount (What is 40% of £50)
 Percentage ÷ 100 x amount (40 ÷ 100 x 50 = £20)
- To change to a percentage (you score 4 out of 5 in a test, what percentage is this?)

Amount you got \div what it is out of x 100 (4 \div 5 x 100 = 80%)

Fractions

- Multiplying Multiply top by top and bottom by bottom.
- Dividing 'Keep Change Flip'.
- Addition or Subtraction You need same bottom number (denominator).

Crucial Knowledge – Stage 2 - Number

Percentage Change

- If a value goes up, it's a percentage increase.
- If a value goes down, it's a percentage decrease.
- We work out percentage of amount and either add it on or subtract it from our starting value
- Or we work out the percentage change by working out the difference in values and dividing by our original value and then multiplying by 100.

Powers

- If we multiply powers we add. $y^3 \times y^4 = y^{(3+4)} = y^7$
- If we divide powers we subtract. $y^{10} \div y^6 = y^{(10-6)} = y^4$
- Anything to the power zero is always 1

Product of Primes

- Any value split into prime numbers **MULTIPLIED** together.
- First 5 prime numbers are 2, 3, 5, 7 and 11.
- Sometimes we put into a VENN diagram to calculate LCM and HCF.

Inequalities

- Understand inequality symbols < > ≤ ≥
- List values that satisfy a inequality.
- Show by drawing on a number line values that satisfy inequality.

Estimation

- An answer close to the exact answer.
- All values are rounded to 1 significant figure.
- Follow BIDMAS to get your estimation.

Use of Calculator

- Must be able to use brackets () on calculator to get an answer to multi stage calculations.
- Must be able to use **powers** on calculator.
- Must be able to use for Standard Form calculations .
- Must be able to use fraction button for all multi tier calculations.
- Must be able to use calculator for percentage calculations.

Crucial Knowledge – Stage 3 - Number

Recurring Decimals

- A decimal with repeating values
- We indicate the repeating numbers with a dot above $0.6 = 0.666666 \dots$ $0.656 = 0.656656656 \dots$ $0.7\dot{1}\dot{6} = 0.7161616...$
- Must be able to convert recurring • decimals to fractions

Fractions

Mixed number to improper • (4 x 3) + 1 = 13Improper to mixed number $13 \div 3 = 4$ remainder 1

Advanced Powers

- A negative power means reciprocal ("1 over")
- $4^{-2} = \frac{1}{4^2} = \frac{1}{1^4}$
- A fractional powers means find

•
$$x^{\frac{1}{2}} = \sqrt{x}$$
 $x^{\frac{1}{3}} = \sqrt[3]{x}$

More complicated fractions require using powers and roots

•
$$16^{\frac{3}{2}} = \sqrt{16}^3 = 4^3 = 64$$

Evaluate a negative fractional power in this order

16

• $=(\sqrt[4]{16})^{-3}=2^{-3}$

- Upper is slightly above your values
- Lower is slightly below your values
- Using bounds affects calculations you must find bounds before any calculations
- Example:

Q: A field measures 34m x 28m both measured to the nearest metre. What is the minimum and maximum area the field could have?

A: Bounds

Upper Bou		Lower Bound
Length (34m)	34.5m	33.5m
Width (28m)	28.5m	27.5m

Maximum Area = 34.5 x 28.5 = 983.25m² Minimum Area = $33.5 \times 27.5 = 921.25 \text{m}^2$

<u>Crucial Knowledge – Stage 1 – Ratio and Proportion</u>

 Ratio as a measure A ratio is a comparison of parts Use a colon (:) to separate parts of a ratio A colon is read as 'to' 2 or 3 parts Understand the parts add up and stay in proportion 	 Equivalent ratios Same values but different numbers Values used can get larger, as well as smaller Do same to all parts 3:6 x4↓↓x4 12:24 	 Dividing a given ratio The question matches the order of items to the order of parts in the ratio. The first thing mentioned gets the first part of the ratio Find the total number of parts in the ratio (+) Divide the amount to be shared by the total parts (÷)
 Cancelling ratios Like simplifying fractions Look for common factors Do the same to both parts of the ratio 3:6 ÷3↓ ↓÷3 1:2 	 Basic unit conversions Convert units of length (mm, cm, m, km) Be able to convert to common unit before calculating Convert units of time Convert units of measure (ml, l) Convert units of mass (g, kg, t) 	 Multiply by each part of the ratio (x Example Q: Adam and Ben share £45 in the ratio 1:2. Who gets how much? A: 1+2 = 3 parts in total £45 ÷ 3 = £15 per part 1:2 x15 x15 x15 15:30 Adam gets £15 and Ben gets £30

Crucial Knowledge – Stage 2 – Ratio and Proportion

Unit conversions

- Area conversions
 Use the same conversions as for length, but squared
- Volume conversions
 Use the same conversions as
 for length, but cubed
- Speed = $\frac{distance}{time}$
- Units for speed include metres per second (m/s) and kilometres per hour (kmph)

Ratio calculations

- Use a ratio to scale measurements up and down
- Examples include using maps and scale drawings
- Size calculations relative to scale and real life

Recipe Scaling

- Work out we have enough to complete
- How much of something do we need

Example:

Q: A recipe uses 300g of flour and 150g of butter to make a cake for 4 people. How much of each ingredient is needed to bake a cake for 6 people.

A: 6 ÷ 4 = 1.5 (scale factor). 300g x 1.5 = 450g flour 150 x 1.5 = 225g butter

Crucial Knowledge – Stage 3 – Ratio and Proportion

Interest Calculations

- Compound Interest is an accumulating interest, changing over time, as a growth
- Depreciation is a reduction

• A reverse percentage is finding the original value $Original = \frac{Final Value}{100 - \% Change} x100$ Proportionality
Values that have a relationship with each other, as one changes, so does the other one
Y = kx
y is directly proportional to x.
Q: If y=24, then x=8
Work out the value of y when x=2.
A: y = kx 24 = kx8 k=3 and so y = 3x
So when x = 2 y = 3 x 2 = 6

• Speed = $\frac{Distance}{Time}$ • Density = $\frac{Mass}{Volume}$ • Pressure = $\frac{Force}{Area}$

Inverse Proportionality

• Values that have a relationship with each other, as one changes, so does the other, but inverse

.

• *y* is **inversely proportional** to x.

Q: When y=2, x=3. Work out the value of y when x=18

A:
$$y = \frac{k}{x}$$
 $2 = \frac{k}{3}$ $k = 6$ and so $y = \frac{6}{k}$
When x = 18 y = 6 ÷ 18 = 1/3

Crucial Knowledge – Stage 1 – Geometry and Measures

Coordinates

- Remember "along the corridor then up the stairs"
- X and y values written on the axes
- 4 quadrants

Area and perimeter

- Perimeter is distance around shape
- Area is space inside a shape (2D), measure in square units
- Rectangle *Area* = *length* × *width*
- Triangle $Area = \frac{1}{2}(base \times height)$ Only use diagonals for perimeter
- Trapezium $Area = \frac{1}{2}(a + b) \times height$ Only use diagonals for perimeter
- Circle $Area = \pi \times radius^2$ $Circumference = 2\pi \times radius$ Circumference is the perimeter of a circle

Use of Protractor

- Measure angles accurately
- Draw bearings

Angle Reasoning

- Angles on straight line = 180°
- Angles in a triangle = 180°
- Vertically opposite angles are always equal
- Angles in quadrilateral = 360°
- Angles at a point = 360°

Types of Triangles

- Scalene all sides and angles are different
- Isosceles 2 sides and angles are the same
- Equilateral 3 sides and angles are the same
- Right contains a right angle

Terminology Shape

- Edge Where 2 faces meet
- Vertices Where 3 faces meet
- Face side of a 3d shape
- Quadrilateral a 4 sided polygon
- Polygon a 2d shape with straight sides
- Acute an angle less than 90°
- Obtuse an angle between 90° and 180°
- Reflex an angle more than 180°

Crucial Knowledge – Stage 2 – Geometry and Measures

Polygons A shape with 3 or more straight sides Total Interior Angles = $(n-2) \times 180$ Interior + Exterior = 180° Sum of Exterior = 360° **Basic transformations** • Reflections Over straight lines (y=, x=) including diagonals (y=x) Rotations Direction, Distance and Centre Translation

 $\binom{right + left -}{up + down -}$

Enlargement Scale factor and Centre

Bearings

- 3 digit format
- Measure clockwise from North, 000°
- Be able to draw and add onto a diagram
- Measure reflex angles using a compass
- Calculations using North for parallel lines

Angles with parallel lines

- F Corresponding Always equal
- Z Alternate Always equal
- C Co-Interior Always add to 180°

Crucial Knowledge – Stage 3 – Geometry and Measures

Loci and Constructions

- Perpendicular line bisector
- Angle bisector
- Basic shading of area that satisfy a LOCI

<u>Circle Theories</u>

- Angle facts relating to things in or around a circle
- 8 circle theorems
- Often include Pythagoras' Theorem and Right angled Trigonometry

Similar Shapes

- Divide 2 similar sides to find a linear scale factor
- Area scale factor is the linear scale factor squared
- Volume scale factor is the linear scale factor cubed
- Be prepared to redraw diagrams to help.

Advanced Volumes

- Sphere Volume = $\frac{4}{3}\pi r^3$
- Hemisphere Volume = $\frac{2}{3}\pi r^3$
- Cone Volume = $\frac{1}{3}$ (Base area × height)
- Pyramid Volume = $\frac{1}{3}$ (Base area × height)
- Frustrum a cone with a cone cut of the top.
 Find the volume of the full cone and subtract the volume of the missing cone

Advanced Transformations

- Negative and Fractional enlargements
- Descriptions of single transformations

Right angled trig

- Identify Hypotenuse, Adjacent and Opposite
- Identify Sin, Cos or Tan function

$$Sin\theta = \frac{opp}{hyp} \quad Cos\theta = \frac{adj}{hyp} \quad Tan\theta = \frac{opp}{adj}$$

- Normal function for sides
- Inverse function (Sin⁻¹) etc for angles

Crucial Knowledge – Stage 1 – Algebra

Algebra terminology

- 2y means 2 multiplied by the value of 'y'.
 So if y = 5 then 2y = 2 x 5 = 10
- y^2 the value of 'y' multiplied by itself. So if y = 5 then y^2 = 5 x 5 = 25

Substitution

- We get rid of our letters by putting number in to create an answer.
- We are normally given formula and values to put in, but sometimes we have to create the expression and then put values in.
- We need to know about terminology to do this.

You are told $E = \frac{1}{2} mv^2$ Calculate E when m = 10 and v = 2.5

> E = ½ x 10 x 2.5 x 2.5 E = 31.25

<u>Simplifying – Collecting like terms</u>

- We can only bring **'like terms'** together to simplify the expression
- Rewrite to get your 'like terms together'
 <u>Adding and Subtracting</u>

 $\begin{array}{l} 4a+3b+6a-b=4a+6a+3b-b=10a+2b\\ 3f^2+5g^2+3f^2-7g^2=3f^2+3f^2+5g^2-7g^2=6f^2-2g^2\end{array}$

Multiplying and Dividing

 $4a \times 6a = 24a^2$ (Multiply numbers and add powers) $30b^5 \div 5b^2 = 6b^3$ (Divide numbers and subtract powers)

Multiplying out single brackets• Bracket create an order (BIDMAS)• Brackets are also an invisible multiply
6 (a + 3) = 6 x a + 6 x 3 = 6a + 18
5 (2b - a) = 5 x 2b + 5 x - a = 10b - 5a
 $2m (3m - 5) = 2m x 3m + 2m x - 5 = 6m^2 - 10m$

Crucial Knowledge – Stage 1 – Algebra

Solving equations

- To get a numerical answer for a letter
- We have to do the same to both sides of the equals sign
- If we move things across the equals sign the operator changes to be opposite
 Solve 4y + 1 = 17
 Move +1 over to become -1

4y = 17 -1 so 4y = 16

```
Move x4 over to become \div4 so y = 16\div4
```

<u>y = 4</u>

Solve 2(3y + 1) = 20Expand bracket $2 \times 3y = 6y$ and $2 \times 1 = 2$ so 6y + 2 = 20 Move +2 over to become -2 6y = 20 - 2 so 6y = 18Move x6 over to become $\div 6$ so $y = 18 \div 6$ y = 3

Factorising

- The process of putting things into brackets
- We can have numerical or algebraic factors
- The 'best' factor goes on the outside of the brackets
- You can check your answer by expanding bracket <u>Factorise 10a + 5b</u>

'best' factor is 5 so this goes on outside of brackets 5(?????) 2a + b in brackets because when these are multiplied by 5 you get your 10a and 5b

So 5(2a + b) is answer

Factorise 20a² + 4a

'best' factor is 4 number wise and a algebra wise it is a so this goes on outside of brackets 4a(??????)

5a + 1 in brackets because when these are multiplied by 4a you get your 20a² and 4a

So 4a(5a + 1) is answer

Crucial Knowledge – Stage 2 – Algebra

Expanding Double Brackets – FOIL

- Two brackets with nothing between them
- (x+2)(x+5) This is a double bracket
- 4(x+2) + 5(x+5) This is 2 single brackets
- When expanding them think First Outer Inner Last
- To start with, you get 4 terms out of double brackets
- You must simplify to 3 or sometimes 2 values

Straight line graphs

- Remember y = ? (this is horizontal line)
- Remember x = ? (this is vertical line)
- You have to substitute values into equations to plot the graph
- y = mx + c where y = y coordinate, m = gradient (how steep graph is), x = x coordinate and c = intercept (where we cut y axis)
- Parallel lines have same gradients
- Gradient is RISE ÷ RUN a positive number we climb and a negative value we ski down

Linear sequences

- A list of numbers that goes up or down by the same amount each time
- Work out Term to Term rule
- Work out your Zero Term
- Form your equation for the nth term
- A value appears if a sequence, the nth term equation is solved with an integer answer.

Solving linear equations – more advanced

- Fractional or non integer Follow your normal rules, be prepared to give your answer as a fraction, improper fraction or mixed number. It might be positive or negative.
- x on both side Before you start identify the smallest algebra term and do the opposite of this to both sides of the equation. Then, follow your rules to solve as normal.

Crucial Knowledge – Stage 3 – Algebra

Simultaneous Equations

- When 2 things happen at the same time, sometimes you have to form the equations
- You can sometimes take one equation away form another to solve
- Sometimes you have to cross multiply equations
- Remember (SSS) Signs Same Subtract
- Follow your solving linear equation rules

Quadratic Equation

• Be able to apply equation to solve a quadratic

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Algebraic Fractions

- Apply normal rules of fractions
- Apply normal rules of solving algebra
- Sometimes you simplify by factorising
- Your answer may still be an algebraic fraction

Curved Graphs

- Plot x² and x³ graphs using substitution with a table of values
- A + x^2 equation gives a smiley face and x^2 equation a frown
- Use quadratic graphs to obtain equation answers by drawing on your graph

Factorising Quadratics

- Putting into a set of double brackets
- Look for number to be product of factor pairs
- Look for number before 'x' to be the sum of factor pairs
- To solve make either bracket equal to zero

Quadratic Sequences

- A list of numbers that goes up or down by a different amount each time
- Look for second tier term to term rule each multiple of 2 is one x²
- Work out first 5 values to this amount of x² then solve linear sequence that is the difference between this and original sequence

Crucial Knowledge – Stage 1 – Data and Probability

Mean, median, mode and range

- You must be able to get measures from a list of values or values in a frequency table
- $MEAN = Total of values \div Number of values$
- MEDIAN The middle value when written in size order
- MODE The value that occurs the most often
- RANGE Maximum value Minimum value

Sample space diagrams

A list of all possible outcomes from an event. We use this to help calculate probabilities

Probability and relative frequency

A list of all probabilities adds up to 1

Times occured

Relative frequency =-Number of trials

Displaying data

Stem and Leaf **** Stem Leaf A 4 4 4 2 3 1 1 7 2 2 2 2 2 34577 2 2 2 4 001

Interpreting data

- Get values from bar charts
- Get values from pie Charts
- Use key to get values from Stem and Leaf diagram
- Use key to get values from Pictogram

Probability definition and scale

- Outcome A possible result of an experiment ٠
- Event A set of outcomes ٠
- Impossible An outcome that cannot happen
- Certain An event that must happen •

<u>Crucial Knowledge – Stage 2 – Data and Probability</u>

 Drawing pie charts Angles in a pie chart = Frequency Total frequency x 360 Use a protractor and ruler to draw accurately 	 Probability t Used to show outcomes of All branches add up to 1 Multiply along branches to Add multiple routes throug 	 Stem and leaf diagrams Pick correct stems Leaves are always single digits Ascending order Use of key Obtain mean, median, mode 			
• Find Mean from a frequency tak	data ple		and range from diagram		
 Find Estimated Mean from grou Calculated Modal class interval Calculate Median class interval A class interval means a group c 	ped frequency table of data	 Mean, median, mode and range with missing values Be able to calculate missing values from a data set when given some of the values. 			
 Two way tables Values add up vertically and horizontally Totals can be given but may need to be calculated Used to simplify information 		Example: The mean of the following 5 numbers is [6][7][?][11][13] What is the missing number? Total value = 5 x 9 = 45 Known total = 6 + 7 + 11 + 13 = 37 Missing value = 45 - 37 = 8			

Crucial Knowledge – Stage 3 – Data and Probability

Probability trees with non replacement

- Draw a probability without being asked to
 Change probability on 2nd and potentially 3rd
 - Change probability on 2nd and potentially 3rd event. Use the information given to determine new probabilities. Make sure all branches add up to 1
 - Use tree to calculate complicated event outcomes by multiplying along branches

Listing Number of Outcomes

• Be able to list number of outcomes from a written information:

Example:

Q: A menu contains 3 starters, 5 mains and 2 desserts. How many different 3 course meals can be ordered? A: $3 \times 5 \times 2 = 30$ different 3 course meals.

Box and Whisker Plots

- Displays 5 key pieces of information.
 - Minimum
 Lower Quartile (Q₁)
 Median (Q₂)
 Upper Quartile (Q₃)
 Maximum
- IQR = $Q_3 Q_1$
- Draw a box plot
- Compare box plots by stating which median is larger and which IQR is wider.

Cumulative Frequency curves

- Plot cumulative frequencies against interval's upper value
- Hand drawn curve that passes through all points
- Draw on to obtain values using horizontal and vertical lines
- Understand value you are after is sometimes above or below your drawn on value

Histograms

 Looks like a bar chart with different width bars

frequency density $= \frac{frequency}{class width}$

- Complete a table of values
- Draw or complete a histogram
- Find an estimated mean or median by reading values from a histogram