Crucial Knowledge - Stage 1 - Number

BIDMAS
The order you do calculations in:
B rackets
I ndices
D ivision
M ultiplication
A ddition
S ubtraction

Place Value

- The 'column values' of numbers

\ldots	Thousands	Hundreds	Tens	Units	Decimal Point	$1 / 10$	$1 / 100$	$1 / 1000$	\ldots.

4 Operators

- Addition (or Sum) +
- Subtraction (or Difference) -
- Multiplication (or Product) \mathbf{x}
- Division -

Fractions Decimals and Percentages

- Different ways of saying part of a whole number
- You can change from one to the other

Negative Numbers

- Adding or subtracting - USE A NUMBER LINE
- Multiplying or dividing use the rules

$+x+=+$	$+\div+=+$
$+x-=-$	$+\div-=-$
$-x+=-$	$-\div+=-$
$-x-=+$	$-\div-=+$

$+x-=-\quad+\div-=-$
$-\mathrm{x}-=+\quad-\div-=+$

Prime Numbers

- Have exactly two factors
- No other whole numbers, except 1 and itself divide into them

Rounding

- Decimal places (column after decimal point)
- Significant Figures (highest value column)

Crucial Knowledge - Stage 1 - Number

Highest Common Factor (HCF) Lowest Common Multiple (LCM)

- Write down all the factors from the numbers and find the biggest value on both lists - This is the Highest Common Factor
- Write down all the multiples of the two numbers and find the smallest on both lists - This is the Lowest Common Multiple

Standard Form

- A way of writing very BIG or very SMALL numbers
- Think BIG numbers - distance between planets and SMALL numbers - sizes of atoms.
- BIG numbers have POSITIVE powers and SMALL number have NEGATIVE powers.

Always a multiply
Always the number 10
4×10^{6}
Positive for very large numbers Negative for very small numbers

Percentages

- An amount out of 100
- To Calculate a percentage of an amount (What is $\mathbf{4 0 \%}$ of $£ 50$)

Percentage $\div 100 \times$ amount ($40 \div 100 \times 50=£ 20$)

- To change to a percentage (you score 4 out of 5 in a test, what percentage is this?)

Amount you got \div what it is out of $\times 100(4 \div 5 \times 100=80 \%)$

Fractions

- Multiplying - Multiply top by top and bottom by bottom.
- Dividing - 'Keep Change Flip’.
- Addition or Subtraction - You need same bottom number (denominator).

Crucial Knowledge - Stage 2 - Number

Percentage Change

- If a value goes up, it's a percentage increase.
- If a value goes down, it's a percentage decrease.
- We work out percentage of amount and either add it on or subtract it from our starting value
- Or we work out the percentage change by working out the difference in values and dividing by our original value and then multiplying by 100 .

Powers

- If we multiply powers we add. $y^{3} x y^{4}=y^{(3+4)}=y^{7}$
- If we divide powers we subtract. $y^{10} \div y^{6}=y^{(10-6)}=y^{4}$
- Anything to the power zero is always 1

Product of Primes

- Any value split into prime numbers MULTIPLIED together.
- First 5 prime numbers are 2,3,5, 7 and 11.
- Sometimes we put into a VENN diagram to calculate LCM and HCF.

Inequalities

- Understand inequality symbols $<>\leq \geq$
- List values that satisfy a inequality.
- Show by drawing on a number line values that satisfy inequality.

Estimation

- An answer close to the exact answer.
- All values are rounded to 1 significant figure.
- Follow BIDMAS to get your estimation.

Use of Calculator

- Must be able to use brackets () on calculator to get an answer to multi stage calculations.
- Must be able to use powers on calculator.
- Must be able to use for Standard Form calculations .
- Must be able to use fraction button for all multi tier calculations.
- Must be able to use calculator for percentage calculations.

Crucial Knowledge - Stage 3 - Number

Recurring Decimals

- A decimal with repeating values
- We indicate the repeating numbers with a dot above
$0 . \dot{6}=0.666666 \ldots$
$0 . \dot{6} 5 \dot{6}=0.656656656 \ldots$
$0.7 \dot{1} \dot{6}=0.7161616 \ldots$
- Must be able to convert recurring decimals to fractions

Fractions

- Mixed number to improper
$4 \frac{1}{3}=\frac{13}{3}$
$(4 x 3)+1=13$
- Improper to mixed number

$13 \div 3=4$ remainder 1

Advanced Powers

- A negative power means reciprocal ("1 over")
- $4^{-2}=\frac{1}{4^{2}}=\frac{1}{16}$
- A fractional powers means find a root
- $x^{\frac{1}{2}}=\sqrt{x} \quad x^{\frac{1}{3}}=\sqrt[3]{x}$
- More complicated fractions require using powers and roots
- $16^{\frac{3}{2}}=\sqrt{16}^{3}=4^{3}=64$
- Evaluate a negative fractional power in this order

- $=(\sqrt[4]{16})^{-3}=2^{-3}=\frac{1}{8}$

Upper and Lower Bounds

- Upper is slightly above your values
- Lower is slightly below your values
- Using bounds affects calculations - you must find bounds before any calculations
- Example:

Q: A field measures $34 m \times 28 \mathrm{~m}$ both measured to the nearest metre. What is the minimum and maximum area the field could have?

A: Bounds

	Upper Bound	Lower Bound
Length $(34 \mathrm{~m})$	34.5 m	33.5 m
Width $(28 \mathrm{~m})$	28.5 m	27.5 m

Maximum Area $=34.5 \times 28.5=983.25 \mathrm{~m}^{2}$
Minimum Area $=33.5 \times 27.5=921.25 \mathrm{~m}^{2}$

Crucial Knowledge - Stage 1 - Ratio and Proportion

Ratio as a measure

- A ratio is a comparison of parts
- Use a colon (:) to separate parts of a ratio
- A colon is read as 'to'
- 2 or 3 parts
- Understand the parts add up and stay in proportion

Cancelling ratios

- Like simplifying fractions
- Look for common factors
- Do the same to both parts of the ratio

3:6
$\div 3 \downarrow \downarrow \times 3$
1:2

Equivalent ratios

- Same values but different numbers
- Values used can get larger, as well as smaller
- Do same to all parts

3:6

$\times 4 \downarrow \downarrow \times 4$
12:24
Basic unit conversions

- Convert units of length (mm, cm, m, km)
- Be able to convert to common unit before calculating
- Convert units of time
- Convert units of measure (ml, I)
- Convert units of mass ($\mathrm{g}, \mathrm{kg}, \mathrm{t}$)

Dividing a given ratio

- The question matches the order of items to the order of parts in the ratio. The first thing mentioned gets the first part of the ratio
- Find the total number of parts in the ratio (+)
- Divide the amount to be shared by the total parts (\div)
- Multiply by each part of the ratio (x

Example

Q: Adam and Ben share $£ 45$ in the ratio 1:2. Who gets how much?
A: $\quad 1+2=3$ parts in total
$\mathbf{£ 4 5} \div \mathbf{3}=\mathbf{£ 1 5}$ per part
1:2
x15 x15
15:30
Adam gets $£ 15$ and Ben gets $£ \mathbf{3 0}$

Crucial Knowledge - Stage 2 - Ratio and Proportion

Unit conversions

- Area conversions

Use the same conversions as for length, but squared

- Volume conversions Use the same conversions as for length, but cubed
- Speed $=\frac{\text { distance }}{\text { time }}$
- Units for speed include metres per second (m / s) and kilometres per hour (kmph)

Ratio calculations

- Use a ratio to scale measurements up and down
- Examples include using maps and scale drawings
- Size calculations relative to scale and real life

Recipe Scaling

- Work out we have enough to complete
- How much of something do we need

Example:
Q: A recipe uses 300 g of flour and 150 g of butter to make a cake for 4 people. How much of each ingredient is needed to bake a cake for 6 people.

A: $6 \div 4=1.5$ (scale factor). $300 \mathrm{~g} \times 1.5=450 \mathrm{~g}$ flour
$150 \times 1.5=225 \mathrm{~g}$ butter

Crucial Knowledge - Stage 3 - Ratio and Proportion

Interest Calculations

- Compound Interest is an accumulating interest, changing over time, as a growth
- Depreciation is a reduction
- Compound Interest

- A reverse percentage is finding the original value Original $=\frac{\text { Final Value }}{100-\% \text { Change }} \times 100$

Proportionality

- Values that have a relationship with each other, as one changes, so does the other one
- $Y=k x$
- y is directly proportional to x.
Q : If $y=24$, then $x=8$
Work out the value of y when $x=2$.
A: $y=k x \quad 24=k x 8 \quad k=3$ and so $y=3 x$
So when $\mathrm{x}=2 \mathrm{y}=3 \times 2=6$
Inverse Proportionality
- Values that have a relationship with each other, as one changes, so does the other, but inverse
- $y=\frac{k}{x}$
- y is inversely proportional to x.

Q: When $\mathrm{y}=2, \mathrm{x}=3$. Work out the value of y when $\mathrm{x}=18$
A: $y=\frac{k}{x} \quad 2=\frac{k}{3} \quad \mathrm{k}=6$ and so $y=\frac{6}{k}$
When $\mathrm{x}=18 \mathrm{y}=6 \div 18=1 / 3$

Compound Measures

- Speed $=\frac{\text { Distance }}{\text { Time }}$
- Density $=\frac{\text { Mass }}{\text { Volume }}$
- Pressure $=\frac{\text { Force }}{\text { Area }}$

Crucial Knowledge - Stage 1 - Geometry and Measures

Coordinates

- Remember "along the corridor then up the stairs"
- X and y values written on the axes
- 4 quadrants

Area and perimeter

- Perimeter is distance around shape
- Area is space inside a shape (2D), measure in square units
- Rectangle Area $=$ length \times width
- Triangle Area $=\frac{1}{2}$ (base \times height $)$ Only use diagonals for perimeter
- Trapezium Area $=\frac{1}{2}(a+b) \times$ height Only use diagonals for perimeter
- Circle Area $=\pi \times$ radius 2

Circumference $=2 \pi \times$ radius
Circumference is the perimeter of a circle

Use of Protractor

- Measure angles accurately
- Draw bearings

Angle Reasoning

- Angles on straight line $=180^{\circ}$
- Angles in a triangle $=180^{\circ}$
- Vertically opposite angles are always equal
- Angles in quadrilateral $=360^{\circ}$
- Angles at a point $=360^{\circ}$

Terminology Shape

- Edge - Where 2 faces meet
- Vertices - Where 3 faces meet
- Face - side of a 3d shape
- Quadrilateral - a 4 sided polygon
- Polygon - a 2d shape with straight sides
- Acute - an angle less than 90°
- Obtuse - an angle between 90° and 180°
- Reflex - an angle more than 180°

Types of Triangles

- Scalene - all sides and angles are different
- Isosceles - 2 sides and angles are the same
- Equilateral - 3 sides and angles are the same
- Right - contains a right angle

Crucial Knowledge - Stage 2 - Geometry and Measures

Pythagoras

b

- $a^{2}+b^{2}=c^{2}$

Square root c^{2} to find Hypotenuse

- $c^{2}+a^{2}=b^{2}$

Square root b^{2} to find shorter side

Plans and Elevations

- Images from 3 different directions
- Front, side and plan
- Work out size or volume
- Draw 3 images from a 3D drawing
- Draw a 3D image from 3 plans and elevations

Polygons

- A shape with 3 or more straight sides
- Total Interior Angles $=(\mathrm{n}-2) \times 180$
- Interior + Exterior $=180^{\circ}$
- Sum of Exterior $=360^{\circ}$

Basic transformations

- Reflections

Over straight lines ($\mathrm{y}=, \mathrm{x}=$) including diagonals ($\mathrm{y}=\mathrm{x}$)

- Rotations

Direction, Distance and Centre

- Translation

$$
\binom{\text { right }+ \text { left }-}{u p+\text { down }-}
$$

- Enlargement

Scale factor and Centre

Bearings

- 3 digit format
- Measure clockwise from North, 000°
- Be able to draw and add onto a diagram
- Measure reflex angles using a compass
- Calculations using North for parallel lines

Angles with parallel lines

- F-Corresponding Always equal
- Z - Alternate Always equal
- C-Co-Interior Always add to 180°

Crucial Knowledge - Stage 3 - Geometry and Measures

Loci and Constructions

- Perpendicular line bisector
- Angle bisector
- Basic shading of area that satisfy a LOCI

Circle Theories

- Angle facts relating to things in or around a circle
- 8 circle theorems
- Often include Pythagoras' Theorem and Right angled Trigonometry

Similar Shapes

- Divide 2 similar sides to find a linear scale factor
- Area scale factor is the linear scale factor squared
- Volume scale factor is the linear scale factor cubed
- Be prepared to redraw diagrams to help.

Advanced Volumes

- Sphere Volume $=\frac{4}{3} \pi r^{3}$
- Hemisphere Volume $=\frac{2}{3} \pi r^{3}$
- Cone Volume $=\frac{1}{3}($ Base area \times height $)$
- Pyramid Volume $=\frac{1}{3}($ Base area \times height $)$
- Frustrum - a cone with a cone cut of the top. Find the volume of the full cone and subtract the volume of the missing cone

Advanced Transformations

- Negative and Fractional enlargements
- Descriptions of single transformations

Right angled trig

- Identify Hypotenuse, Adjacent and Opposite
- Identify Sin, Cos or Tan function
- $\operatorname{Sin} \theta=\frac{o p p}{h y p} \quad \operatorname{Cos} \theta=\frac{a d j}{h y p} \quad \operatorname{Tan} \theta=\frac{o p p}{a d j}$
- Normal function for sides
- Inverse function $\left(\operatorname{Sin}^{-1}\right)$ etc for angles

Crucial Knowledge - Stage 1-Algebra

Algebra terminology

- $2 y$ means 2 multiplied by the value of ' y '.

$$
\text { So if } y=5 \text { then } 2 y=2 \times 5=10
$$

- y^{2} the value of ' y ' multiplied by itself.

$$
\text { So if } y=5 \text { then } y^{2}=5 \times 5=25
$$

Substitution

- We get rid of our letters by putting number in to create an answer.
- We are normally given formula and values to put in, but sometimes we have to create the expression and then put values in.
- We need to know about terminology to do this.

$$
\text { You are told } \mathrm{E}=1 / 2 \mathrm{mv}^{2}
$$

Calculate E when $m=10$ and $v=2.5$

$$
\begin{gathered}
E=1 / 2 \times 10 \times 2.5 \times 2.5 \\
E=31.25
\end{gathered}
$$

Simplifying - Collecting like terms

- We can only bring 'like terms' together to simplify the expression
- Rewrite to get your 'like terms together'

Adding and Subtracting
$4 a+3 b+6 a-b=4 a+6 a+3 b-b=10 a+2 b$
$3 f^{2}+5 g^{2}+3 f^{2}-7 g^{2}=3 f^{2}+3 f^{2}+5 g^{2}-7 g^{2}=6 f^{2}-2 g^{2}$

Multiplying and Dividing

$4 a \times 6 a=24 a^{2}$ (Multiply numbers and add powers) $30 b^{5} \div 5 b^{2}=6 b^{3}$ (Divide numbers and subtract powers)

Multiplying out single brackets

- Bracket create an order (BIDMAS)
- Brackets are also an invisible multiply

$$
6(a+3)=6 \times a+6 \times 3=6 a+18
$$

$5(2 b-a)=5 \times 2 b+5 x-a=10 b-5 a$

$$
2 m(3 m-5)=2 m \times 3 m+2 m x-5=6 m^{2}-10 m
$$

Crucial Knowledge - Stage 1-Algebra

Solving equations

- To get a numerical answer for a letter
- We have to do the same to both sides of the equals sign
- If we move things across the equals sign the operator changes to be opposite

$$
\text { Solve } 4 y+1 \text { = } 17
$$

Move +1 over to become -1
$4 y=17-1$ so $4 y=16$
Move $x 4$ over to become $\div 4$ so $y=16 \div 4$

$$
y=4
$$

Solve $2(3 y+1)=20$
Expand bracket
$2 \times 3 y=6 y$ and $2 \times 1=2$ so
$6 y+2=20$ Move +2 over to become -2

$$
6 y=20-2 \text { so } 6 y=18
$$

Move x6 over to become $\div 6$ so $y=18 \div 6$

$$
y=3
$$

Factorising

- The process of putting things into brackets
- We can have numerical or algebraic factors
- The 'best' factor goes on the outside of the brackets
- You can check your answer by expanding bracket

$$
\text { Factorise } 10 a+5 b
$$

'best' factor is 5 so this goes on outside of brackets 5(??????) $2 a+b$ in brackets because when these are multiplied by 5 you get your 10a and 5b

$$
\text { So } 5(2 a+b) \text { is answer }
$$

$$
\text { Factorise } 20 a^{2}+4 a
$$

'best' factor is 4 number wise and a algebra wise it is a so this goes on outside of brackets 4a(??????)
$5 a+1$ in brackets because when these are multiplied by 4 a you get your 20a² and $4 a$

$$
\text { So } 4 \mathrm{a}(5 \mathrm{a}+1) \text { is answer }
$$

Crucial Knowledge - Stage 2-Algebra

Expanding Double Brackets - FOIL

- Two brackets with nothing between them
- $(x+2)(x+5)-$ This is a double bracket
- $4(x+2)+5(x+5)-$ This is 2 single brackets
- When expanding them think First Outer Inner Last
- To start with, you get 4 terms out of double brackets
- You must simplify to 3 or sometimes 2 values

Straight line graphs

- Remember $y=$? (this is horizontal line)
- Remember $x=$? (this is vertical line)
- You have to substitute values into equations to plot the graph
- $y=m x+c$ where $y=y$ coordinate, $m=$ gradient (how steep graph is), $x=x$ coordinate and $c=$ intercept (where we cut y axis)
- Parallel lines have same gradients
- Gradient is RISE \div RUN a positive number we climb and a negative value we ski down

Linear sequences

- A list of numbers that goes up or down by the same amount each time
- Work out Term to Term rule
- Work out your Zero Term
- Form your equation for the nth term
- A value appears if a sequence, the nth term equation is solved with an integer answer.

Solving linear equations - more advanced

- Fractional or non integer - Follow your normal rules, be prepared to give your answer as a fraction, improper fraction or mixed number. It might be positive or negative.
- x on both side - Before you start identify the smallest algebra term and do the opposite of this to both sides of the equation. Then, follow your rules to solve as normal.

Crucial Knowledge - Stage 3 - Algebra

Simultaneous Equations

- When 2 things happen at the same time, sometimes you have to form the equations
- You can sometimes take one equation away form another to solve
- Sometimes you have to cross multiply equations
- Remember (SSS) Signs Same Subtract
- Follow your solving linear equation rules

Quadratic Equation

- Be able to apply equation to solve a quadratic

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Algebraic Fractions

- Apply normal rules of fractions
- Apply normal rules of solving algebra
- Sometimes you simplify by factorising
- Your answer may still be an algebraic fraction

Curved Graphs

- Plot x^{2} and x^{3} graphs using substitution with a table of values
- $A+x^{2}$ equation gives a smiley face and $-x^{2}$ equation a frown
- Use quadratic graphs to obtain equation answers by drawing on your graph

Factorising Quadratics

- Putting into a set of double brackets
- Look for number to be product of factor pairs
- Look for number before ' x ' to be the sum of factor pairs
- To solve make either bracket equal to zero

Quadratic Sequences

- A list of numbers that goes up or down by a different amount each time
- Look for second tier term to term rule each multiple of 2 is one x^{2}
- Work out first 5 values to this amount of x^{2} then solve linear sequence that is the difference between this and original sequence

Crucial Knowledge - Stage 1 - Data and Probability

Mean, median, mode and range

- You must be able to get measures from a list of values or values in a frequency table
- MEAN $=$ Total of values \div Number of values
- MEDIAN - The middle value when written in size order
- MODE - The value that occurs the most often
- RANGE - Maximum value - Minimum value

Sample space diagrams

- A list of all possible outcomes from an event. We use this to help calculate probabilities

Probability and relative frequency

- A list of all probabilities adds up to 1
- Relative frequency $=\frac{\text { Times occured }}{\text { Number of trials }}$

Interpreting data

- Get values from bar charts
- Get values from pie Charts
- Use key to get values from Stem and Leaf diagram
- Use key to get values from Pictogram

Probability definition and scale

- Outcome - A possible result of an experiment
- Event-A set of outcomes
- Impossible - An outcome that cannot happen
- Certain - An event that must happen

Crucial Knowledge - Stage 2 - Data and Probability

Drawing pie charts

- Angles in a pie chart

$$
=\frac{\text { Frequency }}{\text { Total frequency }} \times 360
$$

- Use a protractor and ruler to draw accurately

Probability trees

- Used to show outcomes of multiple events
- All branches add up to 1
- Multiply along branches to find probabilities
- Add multiple routes through tree

Grouped data

- Find Mean from a frequency table
- Find Estimated Mean from grouped frequency table
- Calculated Modal class interval
- Calculate Median class interval
- A class interval means a group of data

Two way tables

- Values add up vertically and horizontally
- Totals can be given but may need to be calculated
- Used to simplify information

Stem and leaf diagrams

- Pick correct stems
- Leaves are always single digits
- Ascending order
- Use of key
- Obtain mean, median, mode and range from diagram

Mean, median, mode and range with missing values

- Be able to calculate missing values from a data set when given some of the values.
Example: The mean of the following 5 numbers is 9 :
[6] [7] [?] [11] [13]
What is the missing number?

Total value $=5 \times 9=45$
Known total $=6+7+11+13=37$
Missing value $=45-37=8$

Crucial Knowledge - Stage 3 - Data and Probability

Probability trees with non replacement

- Draw a probability without being asked to
- Change probability on $2^{\text {nd }}$ and potentially 3rd event. Use the information given to determine new probabilities. Make sure all branches add up to 1
- Use tree to calculate complicated event outcomes by multiplying along branches

Box and Whisker Plots

- Displays 5 key pieces of information.

1. Minimum
2. Lower Quartile $\left(Q_{1}\right)$
3. Median $\left(Q_{2}\right)$
4. Upper Quartile (Q_{3}) 5. Maximum

- $\quad I Q R=Q_{3}-Q_{1}$
- Draw a box plot
- Compare box plots by stating which median is larger and which IQR is wider.

Cumulative Frequency curves

- Plot cumulative frequencies against interval's upper value
- Hand drawn curve that passes through all points
- Draw on to obtain values using horizontal and vertical lines
- Understand value you are after is sometimes above or below your drawn on value

Listing Number of Outcomes

- Be able to list number of outcomes from a written information:
Example:
Q: A menu contains 3 starters, 5 mains and 2 desserts. How many different 3 course meals can be ordered? A: $3 \times 5 \times 2=30$ different 3 course meals.

Histograms

- Looks like a bar chart with different width bars

$$
\text { frequency density }=\frac{\text { frequency }}{\text { class width }}
$$

- Complete a table of values
- Draw or complete a histogram
- Find an estimated mean or median by reading values from a histogram

