Design Context

= Where there are problems that need a solution the Design Context looks at where, how, when, by who a product will be used

The design context may be based on:

- Location (e.g. home)
- Social need (e.g. safety)
- Environmental issues (e.g. sustainability using **natural resources** in a responsible way)

Good examples of design context:

- Support for people with physical or learning disabilities
- Encouraging healthier lifestyles

natural resources = natural products that

Design Brief

= A short way of explaining what you intend to design, who it's for and its purpose

A good design brief should include:

- Context
- Client

- Problem to be solved
- Identify design constraints

Constraints = things that control or

Client

= The person that the product is being designed for

Client profile includes:

- Age
- Where they live
- Job
- Car
- Holiday
- Hobbies and interests
- Any disabilities

Design Specification

= A document that lists all the needs and wants that the design solution must meet

Design specification to include when designing a product:

- Aesthetics how it looks
- Cost
- Customer what they need/want
- Environment
- Safety
- Size

- Function how it works
- Materials and manufacturing

Manufacturing Specification

= The information needed to make a product

Areas to include:

- Scale of production how many will be made
- List of all materials and parts
- Sizes
- Step-by-step instructions
- Testing
- Drawings
- Health and safety

manufacturing = making products (normally on

Social Challenges = The positive and negative effects that a product can have on people	Economic Challenges = How money is made, organized and used in a society	
For example: Everyone now has the ability to play music from a phone, but music that is played too loud could damage the user's hearing. The designer has to consider both the	For example: If a product sells well, the company producing it can open new factories creating more jobs and paying more workers. The more profit a company makes.	
wants of the user and how the designer will affect other people.	economic = understanding how money is made and used	

Environmental Challenges

= The impact/effect that a product will have on the environment

Products can affect the environment:

- Materials use up natural resources
- Processes use energy
- Product is powered
- Disposed of (thrown away) when no longer needed

The 6Rs of Sustainability:

Refuse, Rethink, Reduce, Reuse, Recycle and Repair.

sustainability = using natural resources

Energy

= The power from something (e.g. electricity) that can do work, such as movement or heat

The most common type of **energy** used is electricity.

Sources of energy:

- Fossil fuels fuels taken from the Earth (e.g. coal, oil and gas)
- Nuclear power creates power using a nuclear fission reaction
- Renewable energy sources wind, hydroelectricity and solar are used to produce electricity

Designer

= Someone who produces designs and ideas for new products

Sometimes **designers** work on their own, but often they work as part of a team.

Past and present designers

- Jonathan Ive iMac, iPod and iPhone working for Apple
- James Dyson first bagless vacuum cleaner working for his own company
- Coco Chanel French fashion designer of luxury clothes
- Iris Van Herpen 3d printing of fashion garments

Design Ideas

Each type of drawing and model communicates different information.

- Freehand sketching quick first ideas down on paper
- Working drawings formal drawing using conventions. 2d and 3d views with sizes
- Isometric projection drawing produced at 30 degrees in 3d
- Perspective drawings drawing using 1 or 2 points showing objects becoming smaller as they get further away
- Exploded views shows all parts slightly separated from each other to help understand how parts fit together

Design Strategies

= Different approaches to designing a product

Sometimes designers work on their own, but often they work as part of a team.

- Iterative design making a model of the design, testing and evaluating repeatedly until the design meets all the need of the client
- User-centred design user is considered at the end of each design stage
- Inclusive design product is designed for all ages, gender and physical ability
- System thinking starts by identifying the input, processes and outputs of a product or system.

Working Safely

General safety rules:

- Follow all instructions in the workshop
- Wear an apron and remove any loose clothing or jewellery.
- Tie back long hair
- Always walk never run
- Keep working area clean and tidy
- Only one person to use the machines

Designing and Making Principles

Prototypes

= One-off product made to evaluate a design idea

Prototypes are full-sized first versions or smaller examples of a product. Made so a design can be tested and improved before it is produced in larger numbers.

Prototypes can be made using:

- Hand tools / Machine tools
- Computer aided design
- 3d printing
- Breadboards for electronic systems

Testing and evaluating is done to make sure that a product does its job in the way it was intended.

Testing is to check that the product meets the design specification.

Two different types of **testing**:

- Visual testing = the way it looks
- User testing = does it work

Evaluation = How well does the product:

- meet the needs of the client
- meet the criteria in the design specification

Personal protective equipment (PPE) = Equipment that provides a barrier between the person wearing it and a potential hazard

Types of **PPE** used in the workshop:

- Safety glasses/goggles used to protect eyes from dust and other flying debris
- Apron used to protect clothing and skin from dust, paint, etc.
- Ear protectors used to protect ears from damage caused by loud and noisy equipment

<u>Material properties</u> = How a material will perform and what it can do	<u>Selecting materials</u> = The success of a product depends on the selection of the right materials	<u>Polymers</u> = Plastic materials that are mostly made from oil.	<u>Timbers</u> = Material that comes from trees
 Mechanical properties of a material that show strength are: Tension – pulled in different directions Compression – squeezing and pressing. Shear – pushing in opposite directions. Torsion – twisting in different directions. 	 Material selection needs to look at: Functionality – how a product works Aesthetics – how it looks Availability – how you buy it in the shops Cost Environmental factors – carbon footprint Social and cultural factors – latest trends 	 Types of timber include: Hardwoods – from deciduous trees that can take up to 100 years to grow. Examples are: Oak , Beech. Softwoods– from coniferous trees that take between 25 and 30 years to grow. Example: Pine. Manufactured board – made by gluing particles or pieces of wood together 	
Hardness – resistance to scratching and wear	<u>Paper and boards</u> = Materials that mainly come from trees.	Synthetic = man-made using chemical processes. Typically, made from crude oil	
Toughness – a material will not break when a force is applied	Paper and boards are made by chopping down trees and turning the chips into pulp	by drilling underground or under the sea. <u>Metals</u>	<u>Textiles</u> = Fabric materials that are made from fibres.
Malleability – the way a material can change shape without breaking	Stages of making paper and boards are Timber – cutting down trees 	= Materials that are made from metal ores, which are dug from quarries or mines.	Fibres - very fine, hair-like structures that are spun or twisted into yarns .
 Physical properties of a material Density – is the mass of the material (per unit volume) Electrical conductivity – ability of 	 De-barking – taking off the outside texture Chipping – cutting into small pieces Mechanical pulping process – mixing and cutting by adding water 	Most metals are not used as pure elements. They are normally a mixture of two or more metals called an alloy.	Natural fibres come from plants and animals. Examples Cotton and wool.
 Absorbency – ability of the material to draw in moisture Chemical pulping process – adding different chemicals to break down the wood Hydrapulper – mixing and cutting recycled paper by adding water Refining – used to change the fibres Screening and cleaning Paper-making machine 	 Chemical pulping process – adding different chemicals to break down the 	 Two main types of metals: Ferrous metals – contain iron. Examples Cast iron. Non-ferrous metals – do not contain iron. Examples Aluminium. 	Synthetic fibres come from oil, coal or petrochemicals. Examples Polyester and Acrylic.
	recycled paper by adding waterRefining – used to change the fibres		There are two main methods for making textile fabrics: Weaving and knitting .
	Paper-making machine		
	Weight of the paper and boards is measured in gms grams per square metre		

System thinking

= A group of parts that work together to carry out a function.

The three blocks of the simplest system are:

- Input block signal from outside (e.g. switch or a sensor).
- Process block receives the signal from the input, determines what the system will do.
- Output block is turned on and off by the process block (e.g. light, movement and sound).

New and emerging technologies = Items that are being developed continually.

Technology is the use of knowledge to achieve a practical outcome.

Examples of these are:

- Automation computer technology to operate equipment.
- Computer-aided design (CAD) software to draw, model and simulate the performance of products.
- Computer-aided manufacture (CAM) the use of software to control machines tools.
- **3d printing** making a product model from a polymer from many layers.

Electronic systems

= Made up of a wide range of components.

These components are called:

- Input devices usually a sensor or a switch
- Output devices transforms the
- electrical signals (Lamp, buzzer, motor).
- **Passive components** not an input or output devise, or a power supply (Resistor, diode, capacitor).

Circuit diagrams – each component is drawn as a simple symbol.

New materials

= Materials that have improved properties or combinations of properties that were not previously possible.

Examples of these are:

- Graphene harder than diamond, about 300 times stronger than steel and conducts electricity better than copper.
- Composites made up of two or more different materials.
- Smart materials property that can change depending upon its environment. E.G. light and heat.
- Interactive textiles conductive fibres and threads made from carbon steel and silver to connect a circuit.

Programmable components = A component that can be programmed

to do different tasks.

For example:

 Microcontrollers – work like small computers (computer chip)

Flowcharts and programming - set of instructions that tell the microcontroller what to do. Written on a computer and downloaded into the chip (microcontroller).

Mechanical devices

= A device that can change the amount or direction of force in a system.

The four types of movement are:

- Linear motion moving in straight lines.
- Rotary motion moving in a circle.
- Reciprocating motion moving back and forth in straight lines.
- Oscillating motion swings from side to side.

Types of devices:

Linkages, Gears, Pulley systems, Cam and follower and Rack and pinion.

Electronic and Mechanical Systems New Developments in Technology